首页> 外文会议>World biomaterials congress >Surface potentials determine the potency of supramolecular nanofibrous vaccines
【24h】

Surface potentials determine the potency of supramolecular nanofibrous vaccines

机译:表面电势决定超分子纳米纤维疫苗的效力

获取原文

摘要

Introduction: Self-assembling peptides have been developed recently for immunotherapies and vaccines. Because of their exceptional modularity, functional groups or immune epitopes can be displayed with precise ratios, allowing the tuning of the immune phenotype. When T cell and B cell epitopes are conjugated to the self-assembling peptide QQKFQFQFEQQ (Q11), supramolecular nanofibers displaying the antigenic epitopes are formed, and these elicit strong immune responses. However, there are not yet known design rules for strengthening, weakening, or ablating these immune responses. Such knowledge is important not only for designing nanomaterials as vaccines, but for other applications in which immune responses must be avoided. In the current study, antigen displaying nanofibers with different surface properties were engineered, and their potency on stimulating immune responses were investigated. We found that surface charge, and in particular negative surface charge, had a surprising ability to diminish immune responses against self-assembling peptide materials. Methods: The N-terminus of Q11 was modified with lysine (K), glutamic acid (E), polyethylene glycol (PEG), and propyl groups to introduce positive charge (KQ11 and KKKQ11), negative charge (EQ11 and EEEQ11), hydrophilicity (PEGQ11), and hydrophobicity (PropylQ11), respectively. The peptide antigen OVA_(323-339) was conjugated to Q11 and used as the model antigen (0VAQ11). All peptides were synthesized using standard Fmoc based solid phase peptide synthesis as previously reported. Each modified peptide was mixed with OVAQ11 at a molar ratio of 9:1 and allowed to co-assemble into nanofibers. Thioflavin T (ThT) binding assay, Transmission Electron Microscopy (TEM), and zeta potential measurements were employed to confirm fibrillization and physiochemical properties of the formed nanofibers. To study the effect of surface properties on nanofiber immunogenicity in vivo, co-assembled nanofibers were injected intraperitoneally, and dendritic cell (DC) uptake was measured by flow cytometry (with TAMRA conjugated OVAQ11). Presentation of the peptides by DCs was measured by IL-2 production from DOBW cell co-cultures. Antibody titers were measured by ELISA after subcutaneous immunizations. Results and Discussion: Similar to our previous reported formulation (0VAQ11/Q11), all modified peptides were able to fibrilize and co-assemble with OVAQ11 in beta-strand conformations. Zeta potential measurements revealed that co-assembled nanofibers had altered surface properties. Q11/OVAQ11 had a slightly negative zeta potential (-2.1 mV). KQ11/OVAQ11 and KKKQ11/OVAQ11 had strong positive potential of +20.2 mV and +29.1 mV, respectively, while EQ11/OVAQ11 and EEEQ11/OVAQ11 had strong negative potential of-17.8 mV and -26.5 mV, respectively. PEGQ11/OVAQ11 (-1.9 mV) and PropylQ11/OVAQ11 (-2.6 mV) exhibited near neutral potential like their Q11/OVAQ11 counterparts. Q11/OVAQ11 nanofibers were internalized by DCs efficiently, with 19% MHCII high CD11c+ cells showing positive fluorescence signals. Noticeably, nanofibers with negative surface potentials exhibited negligible uptake by DCs, while KQ11/OVAQ11 and PrapylQ11/OVAQ11 had higher uptake efficiencies. Consequently, Q11/OVAQ11 and positively charged nanofibers led to efficient presentation of OVA epitopes in MHC-Ⅱ, evidenced by strong IL-2 production from DOBW cells when co-cultured with DCs from immunized mice. In contrast, negatively charged nanofibers did not lead to any detectable presentation. Consistent with the DC uptake and presentation results, antibody responses in mice immunized with negatively charged nanofibers were significantly compromised (EQ11/OVAQ11) or completely abolished (EEEQ11/OVAQ11). Conclusions: These results suggest that the immunogenicity of self-assembling peptide nanofibers can be strongly tuned by altering the nanofibers' surface properties. In particular, negative surface charges have the ability to strongly curtail or even abolish immunogenicity. This information provides an efficient way to manipulate the immunogenicity of self-assembled peptide biomaterials and facilitates the design of effective vaccines.
机译:简介:自组装肽最近已被开发用于免疫疗法和疫苗。由于其出色的模块化性,可以以精确的比例显示官能团或免疫表位,从而调节免疫表型。当T细胞和B细胞表位与自组装肽QQKFQFQFEQQ(Q11)缀合时,形成了显示抗原表位的超分子纳米纤维,它们引发了强烈的免疫反应。但是,尚无用于增强,减弱或消除这些免疫反应的已知设计规则。这些知识不仅对于将纳米材料设计为疫苗非常重要,而且对于必须避免免疫反应的其他应用也很重要。在当前的研究中,设计了具有不同表面特性的展示抗原的纳米纤维,并研究了它们对刺激免疫反应的作用。我们发现表面电荷,特别是负表面电荷,具有令人惊讶的能力,可以减少针对自组装肽材料的免疫反应。方法:用赖氨酸(K),谷氨酸(E),聚乙二醇(PEG)和丙基对Q11的N末端进行修饰,以引入正电荷(KQ11和KKKQ11),负电荷(EQ11和EEEQ11),亲水性(PEGQ11)和疏水性(PropylQ11)。将肽抗原OVA_(323-339)缀合至Q11,并用作模型抗原(0VAQ11)。如先前报道的,使用基于标准Fmoc的固相肽合成法合成所有肽。将每种修饰的肽与OVAQ11以9:1的摩尔比混合,并使其共组装成纳米纤维。硫黄素T(ThT)结合测定,透射电子显微镜(TEM)和ζ电势测量被用来确认形成的纳米纤维的原纤维化和理化特性。为了研究表面性质对体内纳米纤维免疫原性的影响,腹膜内注射共组装的纳米纤维,并通过流式细胞术(与TAMRA共轭的OVAQ11)测量树突状细胞(DC)的摄取。 DC的肽呈递是通过DOBW细胞共培养物中IL-2的产生来测量的。皮下免疫后通过ELISA测量抗体滴度。结果与讨论:与我们先前报道的制剂(0VAQ11 / Q11)相似,所有修饰的肽都能够原纤化并与OVAQ11以β链构象共组装。 Zeta电位测量表明,共组装的纳米纤维具有改变的表面性能。 Q11 / OVAQ11的zeta电位略为负(-2.1 mV)。 KQ11 / OVAQ11和KKKQ11 / OVAQ11的正电位分别为+20.2 mV和+29.1 mV,而EQ11 / OVAQ11和EEEQ11 / OVAQ11的负电位分别为-17.8 mV和-26.5 mV。 PEGQ11 / OVAQ11(-1.9 mV)和PropylQ11 / OVAQ11(-2.6 mV)像Q11 / OVAQ11对应物一样表现出接近中性的电势。 Q11 / OVAQ11纳米纤维被DC有效地内在化,其中19%的MHCII高CD11c +细胞显示出阳性荧光信号。值得注意的是,具有负表面电势的纳米纤维对DC的吸收可忽略不计,而KQ11 / OVAQ11和PrapylQ11 / OVAQ11的吸收效率更高。因此,Q11 / OVAQ11和带正电的纳米纤维导致MHC-Ⅱ中OVA表位的有效表达,当与免疫小鼠DC共培养时,DOBW细胞产生大量IL-2可以证明这一点。相反,带负电荷的纳米纤维不会导致任何可检测的表现。与DC摄取和呈递结果一致,用负电荷纳米纤维免疫的小鼠的抗体反应显着受损(EQ11 / OVAQ11)或被完全废除(EEEQ11 / OVAQ11)。结论:这些结果表明,可以通过改变纳米纤维的表面性质来强烈调节自组装肽纳米纤维的免疫原性。特别地,负表面电荷具有强烈抑制甚至消除免疫原性的能力。该信息提供了一种操作自组装肽生物材料免疫原性的有效方法,并有助于设计有效的疫苗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号