首页> 外文会议>World biomaterials congress >Double network hydrogels of poly acrylic acid/pluronic f127 for topical nitric oxide delivery
【24h】

Double network hydrogels of poly acrylic acid/pluronic f127 for topical nitric oxide delivery

机译:聚丙烯酸/ pluronic f127双网络水凝胶,用于局部一氧化氮输送

获取原文

摘要

Introduction: Nitric Oxide (NO) is an endogenous molecule that plays a key role in various biochemical processes, and the topical delivery of exogenous NO has shown to accelerate wound healing. The design of polymer-based NO delivery systems has been focused on systems capable of both preserving the NO charge during the storage and releasing NO slowly in a controlled manner. S-nitrosothiols such as S-nitrosoglutathione (GSNO) have been used as NO donors in biomaterials and can release NO both thermally and photochemically. In this worts, we incorporated GSNO in a double network hydrogel of poly(acrylic acid) (PAA) crosslinked with N,N'-methylenebisacrylamide, interpenetrated with a network of the triblock copolymer PEO99-PPO65-PEO99 (Pluronic F127). Upon water absorption, the membranes were shown to release NO spontaneously at low rate and during prolonged time periods, applications. Materials and Methods: Acrylic acid was polymerized by free radical polymerization in the presence of Pluronic F127 and N,N'-methylenebisacrylamide in distilled water at 30°C for 24 h. Double network membranes were prepared using PAA/F127 mass ratios of 30/70; 50/50; 60/40; 70/30 and 100/0 in glass molds, dialyzed for 7 days and lyophilized. The dry membranes were immersed in GSNO solution 40 mM for 4 h lyophilized again and stored in a desiccator. The GSNO loadings were determined by chemiluminescence using a Sievers NO analyzer. Results and Discussion: The GSNO loadings were found to be ca. 6.0 wt% in pure dry PAA membranes and ranged from 0.6 to 1.3 wt% with the decrease in the PAA/F127 ratio from 70/30 to 30/70, respectively. While PAA led to highly porous hydrogel membranes (Fig. 1a) the interpenetration of PAA with F127 during the polymerization process led to dense membranes with the absence of pores in the micrometric scale (Fig. 1b). Dynamic-mechanical measurements showed that the hydrated interpenetrated PAA/F127 membranes are tougher and more flexible than the pure PAA membranes. These mechanical properties make the PAA/F127 membranes more suitable for topical applications. Representative NO release profiles from the PAA and PAA/F127 (50/50) membranes over 2 h are shown in Fig. 2. As expected, the PAA membrane with higher GSNO loading releases higher amounts of NO compared to the PAA/F127 membrane. However, the rate of NO release also decays faster in the PAA membrane, while the PAA/F127 membrane sustained an almost constant NO release during the time of monitoring. In both cases, the membranes were able to sustain a significant rate of NO release for 6 days, when kept in a constant hydration condition at 37°C in the dark. These data indicate that GSNO-containing PAA and PAA/F127 membranes have potential to be used for the topical delivery of NO in prolonged application times. Figure 1. SEM images of the fracture surfaces of a) PAA and b) PAA/F127 (70/30) hydrogel membranes. Figure. 2 Kinetic curves of real time NO release from GSNO-containing hydrogel membranes of crosslinked poly(acrylic acid) (PAA) and PAA interpenetrated with Pluronic F127 (PAA/F127), measured by chemiluminescence. Conclusion: GSNO-containing PAA and PAA/F127 hydrogel membranes are capable of providing sustained NO release for prolonged time periods. Interpenetration of PAA with Pluronic F127 leads to a significant improvement in the mechanical properties of the membranes and may allow a slower rate of NO release in topical applications.
机译:简介:一氧化氮(NO)是一种内源性分子,在各种生化过程中起着关键作用,外源性NO的局部递送已显示出可加速伤口愈合。基于聚合物的NO输送系统的设计已集中在既能够在存储过程中保留NO电荷又能够以受控方式缓慢释放NO的系统上。 S-亚硝基硫醇,如S-亚硝基谷胱甘肽(GSNO),已被用作生物材料中的NO供体,可以通过热和光化学方式释放NO。在这麦芽汁中,我们将GSNO掺入了与N,N'-亚甲基双丙烯酰胺交联的聚丙烯酸(PAA)双网络水凝胶中,并与三嵌段共聚物PEO99-PPO65-PEO99(Pluronic F127)的网络互穿。吸水后,膜显示出以低速率自发释放NO的过程,并在较长的使用时间内释放出NO。材料与方法:在Pluronic F127和N,N'-亚甲基双丙烯酰胺的存在下于30°C的蒸馏水中通过自由基聚合将丙烯酸聚合24小时。使用30/70的PAA / F127质量比制备双网膜。 50/50; 60/40; 70/30和100/0在玻璃模具中透析7天并冻干。将干燥的膜再次浸入40mM的GSNO溶液中4小时,再冻干,并保存在干燥器中。使用Sievers NO分析仪通过化学发光法测定GSNO的负载量。结果与讨论:GSNO的负载量约为。在纯干PAA膜中为6.0 wt%,在0.6至1.3 wt%的范围内,而PAA / F127的比例分别从70/30降低至30/70。虽然PAA导致了高度多孔的水凝胶膜(图1a),但在聚合过程中PAA与F127的互穿导致了致密的膜而在微米级上没有孔(图1b)。动态力学测量表明,水合互穿的PAA / F127膜比纯PAA膜更坚韧,更柔韧。这些机械性能使PAA / F127膜更适合局部应用。图2显示了2小时内PAA和PAA / F127(50/50)膜的典型NO释放曲线。正如所料,与PAA / F127膜相比,具有较高GSNO含量的PAA膜释放的NO量更高。但是,PAA膜中的NO释放速率也下降得更快,而PAA / F127膜在监测期间保持了几乎恒定的NO释放。在这两种情况下,当在黑暗中于37°C保持恒定的水合作用条件时,膜能够维持6天的显着NO释放速率。这些数据表明,含有GSNO的PAA和PAA / F127膜有潜力在延长的应用时间内用于NO的局部输送。图1. a)PAA和b)PAA / F127(70/30)水凝胶膜的断裂表面的SEM图像。数字。图2通过化学发光法测定了从含GSNO的交联聚丙烯酸(PAA)和与Pluronic F127(PAA / F127)互穿的PAA的GSNO的水凝胶膜中实时释放NO的动力学曲线。结论:含GSNO的PAA和PAA / F127水凝胶膜能够长时间持续释放NO。 PAA与Pluronic F127的互穿可显着改善膜的机械性能,并可以在局部应用中降低NO释放速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号