首页> 外文会议>AIAA/ASCE/AHS/ASC structures, structural dynamics and materials conference;AIAA SciTech forum >Multiscale Modeling of a Mechanophore-embedded Nanocomposite for Damage Initiation Detection
【24h】

Multiscale Modeling of a Mechanophore-embedded Nanocomposite for Damage Initiation Detection

机译:机械损伤嵌入纳米复合材料损伤起始检测的多尺度建模

获取原文

摘要

This paper presents multiscale modeling of a mechanophore-embedded nanocomposite material for detection of damage initiation. Mechanophores are force-responsive functional units which allow for molecular-scale understanding of the local mechanical environment and can transform the material properties in response. Recently, a cyclobutane-based mechanophore embedded in a thermoset polymer matrix has been investigated for detecting damage precursors and tracking propagation in a thermoset polymeric matrix. Tris-(Cinnamoyloxymethyl)-Ethane (TCE) was used as fluorescent crack sensing additives in epoxy network polymer blends. The cyclobutane sensing units were produced by photodimerization of the C=C double bond in the cinnamoyl functional group of TCE. When the blended system undergoes crack formation and propagation, the cyclobutane units are mechanochemically cleaved to afford the monomeric structure. This structure is capable of strong fluorescence emission, indicating the location of the crack in the epoxy. This study aims at developing a mechanochemical reaction-based multiscale modeling framework to simulate the self-sensing phenomenon of TCE-embedded thermoset polymers. The methodology initiates at the atomistic level and connects the relevant length scales; ranging from mechanophore activation at the sub-molecular level to fluorescence intensity at the nano/microscale. A quantum theory-based method is incorporated to quantify the interatomic potential of the mechanophore under external force. Intermolecular force is estimated using molecular dynamics (MD) simulation by analyzing energy distribution in the epoxy/smart material network structure. A bond ordered potential-based MD simulation has been incorporated to simulate mechanophore activation, which is correlated to the fluorescence intensity of the mechanophore. The experimentally observed color change phenomena associated with damage initiation have also been interpreted using this quantum theory-based modeling framework.
机译:本文提出了一种用于嵌入损伤机理的纳米复合材料的多尺度建模方法。机械力学是力响应性功能单元,可以对局部机械环境进行分子尺度的了解,并可以相应地改变材料的性能。近来,已经研究了嵌入在热固性聚合物基质中的基于环丁烷的机制,以检测损伤前体并跟踪在热固性聚合物基质中的传播。 Tris-(肉桂酰氧基甲基)-乙烷(TCE)用作环氧网络聚合物共混物中的荧光裂纹感应添加剂。环丁烷传感单元是通过TCE肉桂酰基官能团中C = C双键的光二聚作用产生的。当共混体系经历裂纹形成和扩展时,将环丁烷单元进行机械化学裂解以提供单体结构。这种结构能够发出强烈的荧光,表明裂纹在环氧树脂中的位置。这项研究旨在开发一种基于机械化学反应的多尺度建模框架,以模拟TCE嵌入的热固性聚合物的自感应现象。该方法始于原子水平,并连接了相关的长度尺度。范围从亚分子水平的机械力激活到纳米/微米级的荧光强度。结合基于量子理论的方法来量化外力作用下机械载体的原子间电势。分子间力是使用分子动力学(MD)模拟通过分析环氧树脂/智能材料网络结构中的能量分布来估算的。结合了基于键有序电势的MD模拟来模拟机械载体的激活,这与机械载体的荧光强度相关。使用这种基于量子理论的建模框架还可以解释与损伤引发相关的实验观察到的颜色变化现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号