首页> 外文会议>IEEE Annual Symposium on Foundations of Computer Science >Beyond the Central Limit theorem: Asymptotic Expansions and Pseudorandomness for Combinatorial Sums
【24h】

Beyond the Central Limit theorem: Asymptotic Expansions and Pseudorandomness for Combinatorial Sums

机译:超越中心极限定理:组合和的渐近展开性和伪随机性

获取原文

摘要

We prove a new asymptotic expansion in the central limit theorem for sums of discrete independent random variables. The classical central limit theorem asserts that if {Xi}n i=1 is a sequence of n i.i.d. Random variables, then S = ≥ n i=1 Xi converges to a Gaussian whose first two moments match those of S. Further, the rate of convergence is O(n -- 1/2) Roughly speaking, asymptotic expansions of the central limit theorem show that by considering a family of limiting distributions specified by k ≥ 2 (k=2 corresponds to Gaussians) and matching the first k moments of S to such a limiting distribution, one can achieve a convergence of n -- (k -- 1)/2. While such asymptotic expansions have been known since Cramer, they did not apply to discrete and non-identical random variables. Further, the error bounds in nearly all cases was non-explicit (in their dependence on {Xi}), thus limiting their applicability. In this work, we prove a new asymptotic expansions of the central limit theorem which applies to discrete and non-identical random variables and the error bounds are fully explicit. Given the wide applicability of the central limit theorem in probability theory and theoretical computer science, we believe that this new asymptotic expansion theorem will be applicable in several settings. As a main application in this paper, we give an application in derandomization: Namely, we construct PRGs for the class of combinatorial sums, a class of functions first studied by [GMRZ13] and which generalize many previously studied classes such as combinatorial rectangles, small-biased spaces and modular sums among others. A function f : [m]n → {0, 1} is said to be a combinatorial sum if there exists functions f1,, fn : [m] → {0, 1} such that f(x1,, xn) = f1(x1) ++ fn(xn). For this class, we give a seed length of O(logm + log3/2 (n/ε)), thus improving upon [2] whenever ε ≤ 2 -- )l- gn)3/4.
机译:我们证明了离散独立随机变量之和的中心极限定理中的新渐近展开。经典的中心极限定理断言,如果{Xi} n i = 1,则是n i.i.d的序列。随机变量,则S =≥ni = 1 Xi收敛到前两个矩与S一致的高斯方程。此外,收敛速度为O(n-1/2)大致来说,中心极限定理的渐近展开表明通过考虑由k≥2(k = 2对应于高斯)规定的一类极限分布并将S的前k个矩与这样的极限分布进行匹配,可以实现n-(k-1 )/ 2。尽管自Cramer以来就已经知道了这种渐近展开式,但它们不适用于离散且不相同的随机变量。此外,几乎在所有情况下,误差界限都是不明确的(取决于它们对{Xi}的依赖),因此限制了它们的适用性。在这项工作中,我们证明了中心极限定理的新渐近展开式,该展开式适用于离散和不相同的随机变量,并且误差范围是完全明确的。考虑到中心极限定理在概率论和理论计算机科学中的广泛应用,我们相信这种新的渐近展开定理将适用于几种情况。作为本文的主要应用,我们给出了去随机化的一个应用:即,我们为组合和类构造PRG,组合和类是[GMRZ13]首先研究的函数类,它对许多以前研究的类进行了概括,例如组合矩形,小-偏斜的空间和模数总和。如果存在函数f1,fn:[m]→{0,1}使得f(x1 ,, xn)= f1,则将函数f:[m] n→{0,1}称为组合和。 (x1)++ fn(xn)。对于此类,我们给定种子长度为O(logm + log3 / 2(n /ε)),因此,只要ε≤2-()-gn)3/4,就可以提高[2]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号