首页> 外文会议>SPWLA Annual Logging Symposium;Society of Petrophysicists and Well Log Analysts, inc >Shale Fracturing Characterization and Optimization by Using Anisotropic Acoustic Interpretation, 3D Fracture Modeling and Neural Network
【24h】

Shale Fracturing Characterization and Optimization by Using Anisotropic Acoustic Interpretation, 3D Fracture Modeling and Neural Network

机译:利用各向异性声学解释,3D裂缝建模和神经网络对页岩压裂进行表征和优化

获取原文

摘要

Multiple fractures or an extensive fracture network iscritical for commercially viable production from lowpermeability formations, such as shales. Mechanicalanisotropy is inherent in shales because of its platy nature.This inherent anisotropy makes fracture prediction in shalesmore complex, and traditional methods to predict fracturegeometry assuming isotropy frequently prove to beinadequate. Current analytical methods boldly assume aconstant fracture height and constant mechanical propertiesfor the entire height. Common 3D fracture modelingsoftware are based on isotropic rock models, and modelsthat take anisotropy into account are computationallyexpensive and time consuming, especially when numeroussimulations must be performed by varying the inputparameters for parametric study.This paper proposes a workflow to improve the predictionof fracture geometry in anisotropic formations. Theworkflow involves generating a neural network by using alimited number of 3D fracture modeling cases. After theneural network is obtained from a pilot or offset well, it canbe easily embedded into software for optimizing fracturedesign, identifying geologic sweet spots, and predictingfracture propagation and correlating the results to otherhorizontal or vertical wells in the same geological area.This process can be divided into three steps. First, theanisotropic models are used to predict horizontal andvertical Young’s modulus (E_(horz) and E_(vert)), Poisson’s ratio(v_(horz) and v_(vert)), and anisotropic minimum horizontal stress(σ_(hmin_ani)) from sonic and density log measurements. Second,the elastic moduli properties and σ_(hmin_ani) are entered into a3D fracture modeling simulator to run different cases byvarying the completion input parameters. The outputs of thefracture simulator (i.e., the fracture length, height, width,and effective length) serve as a training database to theneural network. In the final step, a neural network isgenerated based on the training database. After thereservoir-specific neural network is developed, fracturegeometry can be predicted or optimized for numerouscombinations of completion input parameters in a timelyand cost effective manner. Because the commonly availablecommercial fracture modeling software assumes isotropy, anew method is presented in this paper to representmechanical property anisotropy using equivalent Young’smodulus (E_(eq)) and Poisson’s ratio (v_(eq)). E_(eq) and v_(eq) arederived from E_(horz), E_(vert),v_(horz), and v_(vert) and the isotropic (Sneddon and Berry 1958) and anisotropic (Chertov 2012)width functions.This workflow is demonstrated by generating a neuralnetwork for two reservoirs using anisotropic elastic modulias predicted by the dipole sonic log. The fracture geometrypredicted by the neural network is compared with theconventional method, assuming the isotropic shale rock. Theresults show that by assuming an isotropic model thefracture width is overestimated, and the fracturecontainment and propped length are underestimated. Theanisotropic neural network model is further run in a largeparametric study to demonstrate how the effective lengthvaries with perforation position, injection volume, andinjection rate. The results helped to optimize perforationdepth, injection rate, and pumped volume.
机译:多发性骨折或广泛的骨折网是 从零开始对商业上可行的生产至关重要 渗透性地层,如页岩。机械的 页岩具有板状性质,因此它是页岩固有的各向异性。 这种固有的各向异性使页岩裂缝预测成为可能 更复杂的传统方法来预测骨折 假设各向同性的几何经常被证明是 不足。当前的分析方法大胆假设 恒定的断裂高度和恒定的力学性能 整个高度。常见的3D裂缝建模 软件基于各向同性岩石模型和模型 在计算上考虑了各向异性 昂贵且耗时,尤其是当数量众多时 模拟必须通过改变输入来执行 参数研究的参数。 本文提出了一种改进预测的工作流程 各向异性地层的裂缝几何形状。这 工作流程涉及通过使用 数量有限的3D骨折建模案例。之后 神经网络是从先导井或偏移井获得的,它可以 易于嵌入到软件中以优化断裂 设计,确定地质优势点并进行预测 裂缝扩展并将结果与​​其他相关 同一地质区域内的水平或垂直井。 此过程可以分为三个步骤。首先, 各向异性模型用于预测水平方向和 垂直杨氏模量(E_(horz)和E_(vert)),泊松比 (v_(horz)和v_(vert)),以及各向异性的最小水平应力 (σ_(hmin_ani))来自声波和密度测井测量。第二, 弹性模量和σ_(hmin_ani)输入到 3D骨折建模模拟器可通过以下方式运行不同的案例 更改完成输入参数。的输出 断裂模拟器(即,断裂长度,高度,宽度, 和有效长度)作为 神经网络。在最后一步,神经网络是 根据训练数据库生成的。之后 储层特有的神经网络发达,裂缝 可以预测或优化几何形状 及时完成输入参数的组合 和经济有效的方式。因为普遍可用 商业裂缝建模软件假设各向同性 本文提出了一种新的方法来代表 等效杨氏模量的力学性能各向异性 模量(E_(eq))和泊松比(v_(eq))。 E_(eq)和v_(eq)是 衍生自E_(horz),E_(vert),v_(horz)和v_(vert)以及各向同性(Sneddon and Berry 1958)和各向异性(Chertov 2012) 宽度函数。 通过生成神经网络来演示此工作流程 各向异性弹性模量的两个储集层网络 如偶极声波测井所预测的那样。断裂几何 将神经网络预测的结果与 常规方法,假设为各向同性页岩。这 结果表明,通过假设各向同性模型, 裂缝宽度被高估了 安全壳和支撑长度被低估了。这 各向异性神经网络模型在更大的范围内进一步运行 参数研究以证明有效长度 随穿孔位置,进样量和 注射速度。结果有助于优化穿孔 深度,注入速率和泵送体积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号