首页> 外文会议>AIAA/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Combustion LES of a Multi-Burner Annular Aero-engine Combustor using a Skeletal Reaction Mechanism for Jet-A Air Mixtures
【24h】

Combustion LES of a Multi-Burner Annular Aero-engine Combustor using a Skeletal Reaction Mechanism for Jet-A Air Mixtures

机译:多喷射环形航空发动机燃烧器的LES,利用骨架反应机理对Jet-A空气混合物进行燃烧

获取原文

摘要

In this study we describe combustion simulations of a single sector and a fully annular generic multi-burner aero-engine combustor. The objectives are to facilitate the understanding of the flow, mixing and combustion processes to help improve the combustor design and the design process, as well as to show that it is now feasible to perform high-fidelity reacting flow simulations of full annular gas turbine combustors with realistic combustion chemistry. For this purpose we use a carefully validated finite rate chemistry Large Eddy Simulation (LES) model together with a range of reaction mechanisms for kerosene-air combustion. The influence of the chemical reaction mechanism on the predictive capability of the LES model, and on the resulting understanding of the combustion dynamics has recently been proved very important and here we extend this for kerosene-air combustion. As part of this work a separate study of different kerosene-air reaction mechanism is comprised, and based on this evaluation the most appropriate reaction mechanisms are used in the subsequent LES computations. A generic small aircraft or helicopter aero-engine combustor is used, and modeled both as a conventional single sector configuration and more appropriately as a fully annular multi-burner configuration. The single-sector and fully annular multi-burner LES predictions are similar but with the fully annular multi-burner configuration showing different combustion dynamics and mean temperature and velocity profiles. For the fully annular multi-burner combustor azimuthal pressure fluctuations are clearly observed, resulting in successive reattachment-detachment of the flames in the azimuthal direction.
机译:在这项研究中,我们描述了单扇和全环形通用多燃烧器航空发动机燃烧器的燃烧模拟。目的是促进对流动,混合和燃烧过程的理解,以帮助改善燃烧器的设计和设计过程,并表明现在对全环形燃气轮机燃烧器进行高保真反应流模拟是可行的具有逼真的燃烧化学。为此,我们使用经过仔细验证的有限速率化学大涡模拟(LES)模型以及一系列用于煤油-空气燃烧的反应机理。化学反应机理对LES模型的预测能力以及对燃烧动力学的最终理解的影响最近被证明非常重要,在此我们将其扩展到煤油-空气燃烧。作为这项工作的一部分,包括对不同的煤油-空气反应机理的单独研究,并基于此评估结果,在随后的LES计算中使用了最合适的反应机理。使用通用的小型飞机或直升机航空发动机燃烧器,并且将其建模为常规的单扇形构造,并且更合适地建模为完全环形的多燃烧器构造。单扇区和完全环形的多燃烧器LES预测相似,但完全环形的多燃烧器配置显示了不同的燃烧动力学以及平均温度和速度曲线。对于完全环形的多燃烧室燃烧器,可以清楚地观察到方位角压力波动,从而导致火焰沿方位角方向连续重新附着-分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号