首页> 外文会议>International Conference on Domain Decomposition Methods >Isogeometric Overlapping Additive Schwarz Solvers for the Bidomain System
【24h】

Isogeometric Overlapping Additive Schwarz Solvers for the Bidomain System

机译:双域系统的等几何重叠加性Schwarz解算器

获取原文
获取外文期刊封面目录资料

摘要

The electrical activity of the heart is a complex phenomenon strictly related to its physiology, fiber structure and anatomy. At the cellular level the cell membrane separates both the intra- and extracellular environments consisting of a dilute aqueous solution of dissolved salts dissociated into ions. Differences in ion concentrations on opposite sides of the membrane lead to a voltage called the transmembrane potential, v_M, defined as the difference between the intra- and extracellular potentials, (u_I and u_E). The bioelectric activity of a cardiac cell is described by the time course of v_M, the so called action potential. At the tissue level the most complete mathematical model of cardiac electrophysi-ology is the Bidomain model, consisting of a degenerate reaction-diffusion system of a parabolic and an elliptic partial differential equation modelling v_m and u_E of the anisotropic cardiac tissue, coupled nonlinearly with a membrane model. The multiscale nature of the Bidomain models yields very high computational costs for its numerical resolution. The starting point for a spatial discretization is a geometrical representation that encompasses the required anatomical and structural details, and that is also suitable for computational studies. Detailed models were proposed based on structured grids with cubic Hermite interpolation functions, which enable a smooth representation of ventricular geometry with relatively few elements, see e.g. . In this study we used an alternative approach based on Isogeometric Analysis (IGA), a novel method for the discretization of partial differential equations introduced in. This method adopts the same spline or Non-Uniform Rational B-spline (NURBS) basis functions used to design domain geometries in CAD to construct both trial and test spaces in the discrete variational formulation of the differential problem, and provides a higher control on the regularity of the discrete space. The IGA discretization of the Bidomain model in space and semi-implicit (IMEX) finite differences in time lead to the resolution at each time step of a large and very ill-conditioned linear system. Since the iteration matrix is symmetric semidefinite, it is natural to use the preconditioned conjugate gradient method.
机译:心脏的电活动是一种复杂的现象,与生理,纤​​维结构和解剖结构密切相关。在细胞水平上,细胞膜将细胞内和细胞外环境分隔开,该环境由分散成离子的溶解盐的稀水溶液组成。膜相对两侧上离子浓度的差异会导致产生一个称为跨膜电势v_M的电压,该电压定义为细胞内电势和细胞外电势之间的差(u_I和u_E)。心脏细胞的生物电活动由v_M的时间过程描述,即所谓的动作电位。在组织层面,最完善的心脏电生理数学模型是Bidomain模型,该模型由抛物线的简并反应扩散系统和对各向异性心脏组织的v_m和u_E建模的椭圆偏微分方程组成,与非线性耦合。膜模型。 Bidomain模型的多尺度性质为其数值分辨率带来了很高的计算成本。空间离散化的起点是包含所需解剖结构和结构细节的几何表示,它也适用于计算研究。提出了基于具有三次Hermite插值函数的结构化网格的详细模型,该模型可以用相对较少的元素来平滑表示心室几何形状,请参见例如。 。在这项研究中,我们使用了一种基于等几何分析(IGA)的替代方法,这是一种引入偏微分方程离散化的新方法。该方法采用了相同的样条或非均匀有理B样条(NURBS)基函数,用于在CAD中设计域几何图形,以构造差分问题的离散变分形式中的试验和测试空间,并提供对离散空间规则性的更高控制。时间和空间的半隐式(IMEX)有限差分中的双域模型的IGA离散化导致大型且病态严重的线性系统在每个时间步的分辨率。由于迭代矩阵是对称半定的,因此使用预处理的共轭梯度法是很自然的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号