首页> 外文会议>AIAA computational fluid dynamics conference;AIAA aviation forum >High-Order Methods for Conservation Laws employing Embedded Structured Element Method on Unstructured Hexahedral Grid
【24h】

High-Order Methods for Conservation Laws employing Embedded Structured Element Method on Unstructured Hexahedral Grid

机译:非结构六面体网格上嵌入式结构元素法的高阶守恒法

获取原文

摘要

This paper presents the application of the structured-grid-based high-order methods on unstructured hexahedral grids by employing the embedded structured element (ESE) method. The motivation of the embedded structured element method is that, by embedding structured finite volume sub-cells in unstructured hexahedral grids, it attempts to combine favorable features of the unstructured hexahedral grid, for relatively easier generation of computational grids for complex geometries, and the current state-of-the-art structured-grid-based high-order methods with shock-capaturing capability. The embedded structured element approach enables the flexible choice of available low-dissipative high-order methods with shock-capturing capability depending on the flow problems, e.g., variants of WENO scheme, compact scheme, discontinuous high-order methods and combinations of various high-order methods, yet it allows to take advantage of unstructured hexahedral grids. It is anticipated that the ESE method provides the suitable framework for the flow problems involving turbulence/discontinuity interactions in complex geometries. To illustrate the performance of the ESE method, two structured-grid-based high-order methods are employed, namely, the 5th-order WENO-Z and the 5th-order CRWENO-Z schemes with the monotonicity preserving bound, on the unstructured base hexahedral grid. In addition, two Riemann solvers, namely, the Roe scheme and the SD-SLAU, are used to investigate the shock instabilities associated with non-alignment of shock and computational grid. The order of accuracy is examined, and three test cases are carried out with the combinations of employed high-order schemes and Riemann solvers. The simulation results by the ESE method are compared with the exact solutions and the computational results obtained on the structured grid using the hybrid spectral difference/embedded finite volume method and are discussed.
机译:本文介绍了基于结构化网格的高阶方法在非结构化六面体网格上的应用,方法是采用嵌入式结构化元素(ESE)方法。嵌入式结构化元素方法的动机是,通过将结构化有限体积子单元格嵌入非结构化六面体网格中,它试图结合非结构化六面体网格的有利特征,以便相对容易地生成复杂几何形状的计算网格,以及当前具有抗震能力的最先进的基于结构化网格的高阶方法。嵌入式结构化元素方法可根据流动问题灵活选择具有冲击捕捉能力的可用低耗散高阶方法,例如,WENO方案的变体,紧凑型方案,不连续的高阶方法以及各种高阶方法的组合有序方法,但它允许利用非结构化的六面体网格。可以预期,ESE方法为涉及复杂几何形状中的湍流/间断相互作用的流动问题提供了合适的框架。为了说明ESE方法的性能,在非结构化基础上,采用了两种基于结构化网格的高阶方法,即具有单调性保留界限的5阶WENO-Z方案和5阶CRWENO-Z方案。六面体网格。另外,使用两个黎曼求解器,即Roe方案和SD-SLAU,来研究与非对准激振和计算网格相关的激振不稳定性。检验了准确性的顺序,并结合所采用的高阶方案和Riemann求解器进行了三个测试案例。将ESE方法的仿真结果与精确解进行比较,并使用混合谱差/嵌入式有限体积法在结构化网格上获得计算结果,并进行了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号