首页> 外文会议>International conference on environmental degradation of materials in nuclear power systems-water reactors >NOBLE METAL APPLICATIONS FOR SCC MITIGATION IN BWRS: PLATINUM NANOPARTICLE PENETRATION INTO CREVICES AND CRACKS UNDER CONTROLLED FLOW CONDITIONS
【24h】

NOBLE METAL APPLICATIONS FOR SCC MITIGATION IN BWRS: PLATINUM NANOPARTICLE PENETRATION INTO CREVICES AND CRACKS UNDER CONTROLLED FLOW CONDITIONS

机译:BWRS中SCC缓解的贵金属应用:在受控流动条件下铂纳米颗粒渗透到缝隙和裂纹中

获取原文
获取外文期刊封面目录资料

摘要

Most of the US boiling water reactor (BWR) fleet and three European BWRs use noble metal injection to mitigate stress corrosion cracking (SCC) of reactor components. Despite the wide use of this technology there are still open questions regarding the chemical and physical parameters affecting the application process and the possible improvements to it. Since 2010 the Paul Scherrer Institut (PSI), in the frame of a joint effort with the Swiss Nuclear Safety Inspectorate (ENSI) and the Swiss nuclear power plants of Leibstadt (KKL) and Muehleberg (KKM), is addressing these questions. A recurrent question is how deep the Pt nanoparticles can enter into cracks, crevices and other confined spaces and thus provide -in conjunction with H_2- the desired lowering effect on the electrochemical corrosion potential. With this in mind, tests were performed using a high-temperature water loop at PSI where coupon specimens with crevices or cracks were exposed to water carrying Pt particles. In parallel computational fluid dynamics calculations were performed to better understand the flow conditions in the crevices. It was found that under a set of given flow conditions, the penetration of the Pt into the cracks and crevices was strongly dependent on the opening width and orientation with respect to the flow direction. Active flow in the crevice is essential to achieve significant Pt surface loadings. Local variations in Pt surface loading seem to be correlated with changes in flow velocity and direction.
机译:美国大多数沸水反应堆(BWR)船队和三个欧洲BWR使用贵金属注入来减轻反应堆组件的应力腐蚀开裂(SCC)。尽管广泛使用了该技术,但仍存在关于影响应用过程及其可能改进的化学和物理参数的悬而未决的问题。自2010年以来,Paul Scherrer研究所(PSI)在与瑞士核安全监察局(ENSI)以及莱布施塔特(KKL)和Muehleberg(KKM)的瑞士核电厂的共同努力下,致力于解决这些问题。一个经常出现的问题是,Pt纳米颗粒可进入裂缝,缝隙和其他密闭空间的深度有多深,从而与H_2一起对电化学腐蚀电位提供了所需的降低效果。考虑到这一点,使用PSI的高温水循环进行测试,将带有裂缝或裂纹的试样样品暴露在载有Pt颗粒的水中。在并行计算中,进行了流体动力学计算,以更好地了解缝隙中的流动条件。已经发现,在一组给定的流动条件下,Pt渗透到裂缝和缝隙中强烈地依赖于开口宽度和相对于流动方向的取向。缝隙中的有效流动对于实现显着的Pt表面载荷至关重要。 Pt表面载荷的局部变化似乎与流速和方向的变化相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号