首页> 外文会议>Berkeley Symposium on Energy Efficient Electronic Systems >Magnonic holographic co-processor: An approach to energy-efficient complementary logic circuitry
【24h】

Magnonic holographic co-processor: An approach to energy-efficient complementary logic circuitry

机译:Magnonic全息协处理器:一种节能互补逻辑电路的方法

获取原文
获取外文期刊封面目录资料

摘要

Power consumption has emerged as the major problem limiting the scalability and the functional throughput of modern logic devices [1]. This problem has stimulated a great deal of interest to research alternative technologies, which may overcome the constraints inherent to complementary metal-oxide-semiconductor (CMOS)-based circuitry and provide a route to more functional and less power-consuming logic devices. Spintronics is one of the possible directions [2]. The utilization of spin opened a new horizon for the development of non-volatile memory and logic elements. It also offers novel approaches to data transfer. The integration of the spin-based components will require new architecture solutions. In this work, we discuss the possibility of building Magnonic Holographic Co-Processor (MHcP) aimed to complement CMOS in special task data processing. The main advantage of MHcP is combination of memory and logic in one unit. This idea is illustrated in Figure 1. On the left side, it is shown the Von Neumann architecture scheme. It consists of Memory, Control Unit and Arithmetic Logic Unit. The separation between the memory and the logic units is an attribute of the traditional architecture. On the right side of Figure 1, there are shown the schematics of MHcP, where the large portion of memory is embedded into the magnonic holographic logic unit. This architecture solution allows significantly minimize power consumption required for memory addressing and information transfer between the units. The advantage is most prominent in special task data processing requiring large amount of memory resources (e.g. database search).
机译:功耗已成为限制现代逻辑器件的可扩展性和功能吞吐量的主要问题[1]。这个问题引起了人们对替代技术研究的极大兴趣,这些替代技术可以克服基于互补金属氧化物半导体(CMOS)的电路固有的局限性,并提供通往功能更强,功耗更低的逻辑器件的途径。自旋电子学是可能的方向之一[2]。自旋的利用为非易失性存储器和逻辑元件的发展开辟了新的视野。它还为数据传输提供了新颖的方法。基于自旋的组件的集成将需要新的体系结构解决方案。在这项工作中,我们讨论了构建磁致全息协处理器(MHcP)的可能性,该处理器旨在补充CMOS在特殊任务数据处理中的作用。 MHcP的主要优点是将存储器和逻辑组合在一个单元中。图1中说明了这个想法。在左侧,显示了冯·诺依曼(Von Neumann)体系结构方案。它由存储器,控制单元和算术逻辑单元组成。存储器和逻辑单元之间的分隔是传统架构的一个属性。在图1的右侧,显示了MHcP的原理图,其中很大一部分存储器都嵌入了磁全息全息逻辑单元中。该体系结构解决方案可以极大地减少单元之间的存储器寻址和信息传输所需的功耗。在需要大量内存资源(例如数据库搜索)的特殊任务数据处理中,优势最为明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号