首页> 外文会议> >DNS Study for Mechanism of Formation of Lambda Rotational Core and Ring-like Vortex in Late Boundary Layer Transition
【24h】

DNS Study for Mechanism of Formation of Lambda Rotational Core and Ring-like Vortex in Late Boundary Layer Transition

机译:后期边界层过渡中λ旋转核和环状涡形成机理的DNS研究

获取原文

摘要

A-vortex and ring-like vortex play a critical role in the boundary layer transition process. In this paper, the mechanisms of the formation of A-shaped rotational core and ring-like vortex are studied by DNS. The enforced unstable 2D T-S wave at inflow helps lift up the spanwise vorticity. The 3D TS wave is enlarged spanwisely during the linear growth process and it is considered as the mechanism of alternating spanwise vortex to A-shaped rotation centers. However, it is proved that the linear T-S waves cannot form the vortex structures by themselves. The role of the linear unstable modes is only pushing wall vorticity up ( vorticiy roll up) and then form an inflection point of the velocity profile, where the shear transfers to rotation as a result of shear instability. Therefore, the analytic linear solution is very different from DNS at the very beginning. It is also found that the high shear layer formed by the A-vortex is the mechanism of ring-like vortex generation. The generation and evolution process of the first ring-like vortex structure is studied in detail.
机译:A型涡流和环状涡流在边界层过渡过程中起着至关重要的作用。本文通过DNS研究了A形旋转核和环状涡的形成机理。流入时强加的不稳定2D T-S波有助于提升翼展方向的涡度。 3D TS波在线性增长过程中沿展向方向放大,被认为是将展向方向涡旋交替为A形旋转中心的机制。但是,已经证明线性T-S波本身不能形成涡旋结构。线性不稳定模式的作用仅是向上推动壁的涡旋(涡旋卷起),然后形成速度曲线的拐点,在此,剪切力由于剪切不稳定性而转变为旋转。因此,解析线性解决方案与DNS在一开始就大为不同。还发现由A-涡旋形成的高剪切层是环状涡旋产生的机理。详细研究了第一个环形涡旋结构的产生和演化过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号