首页> 外文会议>AIAA SciTech forum;Aerospace sciences meeting >Aerosol Modeling of Soot Nanoparticles in a Turbulent Diffusion Flame Using an Extended Detailed Kinetic Scheme
【24h】

Aerosol Modeling of Soot Nanoparticles in a Turbulent Diffusion Flame Using an Extended Detailed Kinetic Scheme

机译:使用扩展的详细动力学方案在湍流扩散火焰中烟尘纳米颗粒的气溶胶建模

获取原文
获取外文期刊封面目录资料

摘要

In this work, a hybrid finite volume element FVE method is extended to simulate the evolution of soot nanoparticles in a turbulent axisymmetric confined diffusion flame. The FVE method can handle irregular-shaped solution domains and maintain the underlying physical conservation principles. To consider the evolutionary process of soot nanoparticles including nucleation, coagulation, surface growth, and oxidation, a two-variable approach is employed. In this approach, the soot mass fraction and soot number density transport equations are solved using an extended detailed chemical kinetics. Considering the phenyl route to describe the nucleation process, soot inception is based on the formation of two-ringed and three-ringed aromatics from acetylene, benzene, and phenyl radical. Considering the large detailed chemical kinetics, the flamelet combustion model is applied, in which the transport equations of mean mixture fraction and its variance are solved. Turbulence-chemistry interaction is taken into account by using a suitable probability density function. Applying two-equation standard k-ε turbulence model and suitable wall functions, the transport equations of turbulence kinetic energy and its dissipation rate are solved. Assuming optically-thin gases, radiation effects are taken into the account Soot radiation is considered in the optically thin limit, with soot nanoparticles assumed to be Rayleigh range absorber-emitters. To respect the physics of flow, we extend the physical influence scheme to approximate the soot mass fraction and soot number density fluxes over the cell faces via considering the related governing equations. Extending a bi-implicit strategy, the governing equations are solved thorough two different sequential matrices. Comparing with the measured data, the present solution successfully predicts the essential features and characteristics of combustion and soot nanoparticle formation phenomena.
机译:在这项工作中,扩展了混合有限体积单元FVE方法,以模拟在湍流轴对称受限扩散火焰中烟尘纳米粒子的演化。 FVE方法可以处理不规则形状的解域,并保持基本的物理守恒原理。为了考虑烟灰纳米颗粒的演化过程,包括成核,凝结,表面生长和氧化,采用了两个变量的方法。在这种方法中,使用扩展的详细化学动力学来求解烟灰质量分数和烟灰数密度传输方程。考虑到用苯基途径描述成核过程,烟灰的形成基于乙炔,苯和苯基基团形成的两环和三环芳族化合物。考虑到详细的详细化学动力学,应用小火焰燃烧模型,求解了平均混合分数及其方差的输运方程。通过使用合适的概率密度函数考虑了湍流-化学相互作用。应用两方程标准k-ε湍流模型和合适的壁函数,求解了湍流动能及其耗散率的输运方程。假设气体是光学稀薄的,则应考虑辐射效应。碳烟辐射被认为是在光学上很薄的范围内,而碳烟纳米颗粒则被认为是瑞利范围吸收体发射器。为了尊重流动的物理性,我们通过考虑相关的控制方程,扩展了物理影响方案,以近似于单元表面上的烟尘质量分数和烟尘数量密度通量。扩展了双隐策略,控制方程通过两个不同的顺序矩阵求解。与测量的数据进行比较,本解决方案成功地预测了燃烧和烟灰纳米颗粒形成现象的基本特征和特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号