首页> 外文会议>AIAA SciTech forum;Aerospace sciences meeting >RANS-based Aerodynamic Shape Optimization Investigations of the Common Research Model Wing
【24h】

RANS-based Aerodynamic Shape Optimization Investigations of the Common Research Model Wing

机译:通用研究模型机翼的基于RANS的空气动力学形状优化研究

获取原文
获取外文期刊封面目录资料

摘要

The aerodynamic shape optimization of transonic wings requires Reynolds-averaged Navier-Stokes (RANS) modeling due to the strong nonlinear coupling between airfoil shape, wave drag, and viscous effects. While there has been some research dedicated to RANS-based aerodynamic shape optimization, there has not been an benchmark case for researchers to compare their results. In this investigations, a series of aerodynamic shape optimizations of the Common Research Model wing defined for the Aerodynamic Design Optimization Workshop are presented. The computational fluid dynamics solves Reynolds-averaged Navier-Stokes equations with a Spalart-Allmaras turbulence model. A gradient-based optimization algorithm is used in conjunction with a discrete adjoint method that computes the derivatives of the aerodynamic forces. The drag coefficient at the nominal flight condition is minimized subject to lift, pitching moment and geometric constraints. A multilevel acceleration technique is used to reduce the computational cost A total of 768 shape design variables are considered, together with a grid with 28.8 million cells. The drag coefficient of the optimized wing is reduced by 8.5% relative to the baseline. The single-point design has a sharp leading edge that is prone to flow separation at off-design conditions. A more robust design is achieved through a multipoint optimization, which achieves more reliable performance when lift coefficient and Mach number are varied about the nominal flight condition. To test the design space for local minima, randomly generated initial geometries are optimized, and a flat design space with multiple local minima was observed.
机译:跨音速机翼的空气动力学形状优化需要雷诺平均的Navier-Stokes(RANS)模型,这是因为机翼形状,波浪阻力和粘性效应之间存在很强的非线性耦合。尽管已经有一些研究致力于基于RANS的空气动力学形状优化,但是还没有一个基准案例可供研究人员比较其结果。在这项调查中,提出了为“空气动力学设计优化研讨会”定义的“通用研究模型”机翼的一系列空气动力学形状优化方案。计算流体动力学通过Spalart-Allmaras湍流模型求解了雷诺平均的Navier-Stokes方程。基于梯度的优化算法与离散伴随方法结合使用,该方法计算空气动力的导数。受升力,俯仰力矩和几何约束的影响,标称飞行条件下的阻力系数被最小化。使用多级加速技术来降低计算成本。总共考虑了768个形状设计变量以及一个具有2880万个像元的网格。优化后的机翼的阻力系数相对于基线降低了8.5%。单点设计具有锋利的前沿,在非设计条件下易于流分离。通过多点优化可获得更可靠的设计,当升力系数和马赫数在正常飞行条件下变化时,该性能将获得更可靠的性能。为了测试局部最小值的设计空间,优化了随机生成的初始几何形状,并观察到具有多个局部最小值的平坦设计空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号