首页> 外文会议>IEEE Electronic Components and Technology Conference >The quantum theory of solid-state atomic bonding
【24h】

The quantum theory of solid-state atomic bonding

机译:固态原子键合的量子理论

获取原文

摘要

Solid-state bonding refers to the bonding of solid material A and solid material B. Numerous experimental data have shown this possibility. Neither principle nor theory at the atomic level has been reported. How is solid-state bonding possible? Fundamentally, it is possible only if materials A and B can be brought within atomic distance. Over the years, we have proposed the principle: “As A atoms and B atoms are brought within atomic distance so that they can see each other, they will bond provided that they are willing to share the outer electrons.” This is qualitative statement. In this research, we took it one step further and established a quantitative bonding theory. It has been proved that Cu, Ag, and Au atoms do share outer electrons to form molecules: Cu2, Ag2, Au2, CuAg, AgAu, and CuAu. The binding energy, equilibrium distance, and vibrational frequency of the molecule have been measured. They are used to fit the Morse potential energy (E) vs. atomic separation Satm curve. In our model, A atoms and B atoms on the bonding interface share electrons like molecules A:B, where “:” designates 2 shared electrons. The interface is emulated as 2-D array of A:B molecules. The A molecules connect to metal A represented by conventional model of ion core submerged in an electron sea. Same is true for molecules B. The breaking strength of the bonding interface is obtained by multiplying the binding force and the number of atoms per area. The Young's modulus can also be calculated. For Cu:Cu bonding, the Young's module is 261GPa. The experimental value is 110Gpa. The strength of Cu-Ag bonding interface depends on Satm between Cu and Ag atoms. The maximum strength is 25.5Gpa at Satm =0.283nm. The strength decreases to 2.55 GPa at 0.481nm, 255 MPa at 0.635nm, and 25.5MPa at 0.788nm. In bonding experiments, Satm is determined by the bonding conditions and t- e surface conditions. The bonding theory allows us to estimate how close the interface atoms have to be to achieve adequate bonding strength.
机译:固态键合是指固体材料A和固体材料B的键合。大量实验数据表明了这种可能性。原子水平上的原理和理论都没有报道。固态键合怎么可能?从根本上讲,只有将材料A和B置于原子距离之内,才有可能。多年来,我们提出了以下原理:“当A原子和B原子被带入原子距离以使彼此可见时,只要它们愿意共享外部电子,它们就会键合。”这是定性的陈述。在这项研究中,我们更进一步,建立了定量键合理论。已经证明,Cu,Ag和Au原子确实共享外部电子以形成分子:Cu2,Ag2,Au2,CuAg,AgAu和CuAu。已经测量了分子的结合能,平衡距离和振动频率。它们用于拟合摩尔斯势能(E)与原子分离的Satm曲线。在我们的模型中,键合界面上的A原子和B原子像分子A:B一样共享电子,其中“:”表示2个共享电子。该界面被模拟为A:B分子的二维阵列。 A分子连接到金属A,该金属A由浸没在电子海中的离子核的常规模型表示。分子B同样如此。键合界面的断裂强度是通过将结合力和每单位面积的原子数相乘而获得的。杨氏模量也可以计算出来。对于Cu:Cu键合,杨氏模量为261GPa。实验值为110Gpa。 Cu-Ag键合界面的强度取决于Cu和Ag原子之间的Satm。在Satm = 0.283nm时最大强度为25.5Gpa。强度在0.481nm时降低到2.55 GPa,在0.635nm时降低到255 MPa,在0.788nm时降低到25.5MPa。在粘合实验中,Satm由粘合条件和表面条件决定。结合理论使我们能够估计界面原子必须达到多少距离才能达到足够的结合强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号