首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >IMPLEMENTING NONLINEAR BUOYANCY AND EXCITATION FORCES IN THE WEC-SIM WAVE ENERGY CONVERTER MODELING TOOL
【24h】

IMPLEMENTING NONLINEAR BUOYANCY AND EXCITATION FORCES IN THE WEC-SIM WAVE ENERGY CONVERTER MODELING TOOL

机译:在WEC-SIM波能量转换器建模工具中实现非线性浮力和激发力

获取原文

摘要

Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multibody dynamics with hydrodynamic models based on the Cummins equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of high-performance computing resources necessitated by high-fidelity methods, such as Navier-Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions to maximize power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions. In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation. Other aspects of WEC-Sim code development and verification are presented in a companion paper that is also being presented at OMAE2014.
机译:波浪能转换器(WEC)通常使用数值模型进行设计和分析,该数值模型将多体动力学与基于Cummins方程和线性化流体力学系数的流体力学模型相结合。这些建模方法是有吸引力的设计工具,因为它们在计算上不昂贵,并且不需要使用诸如Navier-Stokes计算流体动力学之类的高保真度方法所必需的高性能计算资源。使用线性系数对流体力学进行建模的假设是,设备会经历很小的运动,并且设备的润湿表面积大约是恒定的。然而,WEC设备通常设计为进行大运动以最大程度地提取功率,这使人们怀疑假设线性流体动力学模型准确地捕获了相关的流体-结构相互作用的有效性。在本文中,我们研究与使用线性流体动力系数的仿真相比,从WEC设备的瞬时位置计算浮力和Froude-Krylov力如何改变WEC仿真结果。首先,我们描述用于执行模拟的WEC-Sim工具,以及如何将瞬时力建模的能力整合到WEC-Sim中。然后,我们使用简化的一体式WEC设备来验证模型,并演示考虑这些瞬时计算出的力如何影响仿真结果的准确性,例如设备运动,流体动力和发电。伴随论文中还介绍了WEC-Sim代码开发和验证的其他方面,该论文也在OMAE2014上发表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号