首页> 外文会议>International conference on computer design >Design of high-performance, power-efficient optical NoCs using Silica-embedded silicon nanophotonics
【24h】

Design of high-performance, power-efficient optical NoCs using Silica-embedded silicon nanophotonics

机译:使用二氧化硅嵌入式硅纳米光源性设计高性能,高功效光学NOCS

获取原文
获取外文期刊封面目录资料

摘要

With on-chip electrical interconnects being marred by high energy-to-bandwidth costs, threatening multicore scalability, on-chip nanophotonics, which offer high throughput, yet energy-efficient communication, form an alternative attractive counterpart. In this paper we consider silicon nanophotonic components that are embedded completely within the silica (SiO2) substrate as opposed to prior-art that utilizes die on-surface silicon nanophotonics. As nanophotonic components now reside in the silica substrate's subsurface non-obstructive interconnect geometries offering higher network throughput can be implemented. First, we show using detailed simulations based on commercial optical tools that such Silicon-In-Silica (SiS) structures are feasible, derive their geometry characteristics and design parameters, and then demonstrate our proof of concept by utilizing a hybrid SiS-based photonic mesh-diagonal links network-on-chip topology. In pushing the performance envelope even more, we next develop (1) an associated contention-aware photonic adaptive routing function, and (2) a parallelized photonic channel allocation scheme, that in tandem further reduce message delivery latency. An extensive experimental evaluation, including utilizing traffic benchmarks gathered from full-system chip multiprocessor simulations, shows that our methodology boosts network throughput by up to 30.8%, reduces communication latency by up to 22.5%, and improves the throughput-to-power ratio by up to 23.7% when compared to prior-art.
机译:随着片上电互连,通过高能量到带宽成本,威胁多核可扩展性,片上纳米级介质,提供高吞吐量,且节能的通信,形成替代有吸引力的对应物。在本文中,我们认为硅纳米光电组分,其完全在二氧化硅(SiO 2)衬底内完全嵌入,而不是利用表面上硅纳米晶体的现有技术。由于纳米光电部件现在存在于二氧化硅基板的地下,提供更高的网络吞吐量的几何形状可以实现。首先,我们展示了基于商业光学工具的详细仿真,即这种硅 - 二氧化硅(SIS)结构是可行的,通过利用基于混合SIS的光子网格来展示我们的概念证明-diagonal链接网络上拓扑结构。在推动性能信封甚至更多时,我们下次开发(1)相关的争用感知光子自适应路由功能,并且(2)并行化光子信道分配方案,其串联进一步降低了消息传递等待时间。一个广泛的实验评估,包括利用从全系统芯片多处理器模拟收集的流量基准,表明我们的方法可以将网络吞吐量提升高达30.8%,降低通信延迟高达22.5%,并提高吞吐量比率与现有技术相比,高达23.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号