首页> 外文会议>Annual International Conference of the IEEE Engineering in Medicine and Biology Society >Dynamic Action Potential Clamp as a Powerful Tool in the Development of a Gene-Based Bio-Pacemaker
【24h】

Dynamic Action Potential Clamp as a Powerful Tool in the Development of a Gene-Based Bio-Pacemaker

机译:动态动作电位钳作为基于基于基因的生物起搏器开发的强大工具

获取原文

摘要

The development of a genetically engineered 'biological pacemaker', or 'bio-pacemaker', is a rapidly emerging field of research. One of the approaches in this field is to turn intrinsically quiescent myocardial cells, i.e., atrial or ventricular cells, into pacemaker cells by making them express the cardiac hyperpolarization-activated 'pacemaker current' I{sub}f (known in neurophysiology as I{sub}h), which is encoded by the hyperpolarization-activated cyclic nucleotide-modulated (HCN) gene family. We carried out 'dynamic action potential clamp' (dAPC) experiments in which we record current from a HEK-293 cell transfected with HCN{sub}4, which is the dominant HCN isoform in the sinoatrial (SA) node. This HCN{sub}4-transfected HEK-293 cell is voltage-clamped by the action potential generated in a real-time simulation of a human atrial cell (Courtemanche-Ramirez-Nattel model). In a continuous feedback loop, this current is injected into the atrial cell, so that this cell effectively expresses an HCN{sub}4-based pacemaker current. With sufficiently high 'expression levels' of HCN{sub}4 current the atrial cell is turned into a pacemaker cell with an SA nodal like action potential. Lower expression levels are sufficient if the inward rectifier potassium current (I{sub}(k1)), which is largely responsible for the stable resting potential of atrial cells, is 'down-regulated' by 50%, thus mimicking the gene therapy strategy to create a bio-pacemaker by down-regulation of I{sub}(k1) and (over-)expression of I{sub}f. Our dAPC experiments provide direct insights into the effects of introducing HCN{sub}4 current into an atrial cell, illustrating that dynamic action potential clamp can be a powerful tool in the process of developing a gene-based bio-pacemaker.
机译:基因工程的“生物起搏器”或“生物起搏器”的发展是一种迅速新兴的研究领域。该领域的方法之一是通过使其表达心脏超极化激活的“起搏器电流”I {sub} F来将本质上静态的心肌细胞(即心房或心室细胞)转移到起搏器细胞中。(在神经生理学中已知Sub} H)由超极化激活的循环核苷酸调制(HCN)基因家族编码。我们进行了“动态动作潜在钳位”(DAPC)实验,其中我们从用HCN {sub} 4转染的HEK-293细胞的电流记录电流,这是Sinoatrial(SA)节点中的主要HCN同种型。该HCN {Sub} 4转染的HEK-293电池由在人心房细胞(Courtemanche-Ramirez-Nattel模型)的实时模拟中产生的动作电位电压钳位。在连续反馈回路中,将该电流注入心房细胞,使得该单元有效地表达了基于HCN {Sub} 4的起搏器电流。具有HCN {Sub} 4的足够高的“表达水平”4,电流用SA节点等动作电位转化到起搏器单元。如果对心房细胞的稳定静止电位的稳定静止电位的向内整流钾电流(I {sub}(k1)),较低的表达水平就足够了,这是“下调”的50%,因此模仿基因治疗策略通过{sub}(k1)的下调来创建生物起搏器(k1)和i {sub} f的表达式。我们的DAPC实验提供了直接见解,进入将HCN {Sub} 4电流引入心房细胞的效果,说明动态动作电位夹具可以是开发基于基因的生物起搏器的过程中的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号