【24h】

ON STABILITY MARGIN OF A LQR-BASED VEHICLE NETWORK

机译:LQR的车辆网络的稳定性边际

获取原文

摘要

classical controller can be designed for a stable single vehicle to guarantee a certain stability margin. For aerospace applications, the stability margin is an important measure whose desirable values are explicitly found in military specifications such as MIL-STL-1797. It is well-known that a LQR (linear quadratic regulator) control-based vehicle has a guaranteed stability margin of 6 dB (gain margin) and 60 degrees (phase margin), and it thus has a desired stability margin according to MIL-STL-1797. Here, the LQR control ‘u’ is given as a state feedback control, i.e. u = Fx, where ‘F’ is a LQR gain and ‘x’ is the state vector. But then, what will happen to the guaranteed stability margin if multiple LQR control-based vehicles are connected according to a certain network topology for some purpose such as formation flight? For the purpose of formation flight, the same LQR control gain as for a single aircraft can be used but multiplied with the relative state vector being calculated based on each aircraft’s neighbours; the LQR control u this time is given as u = FL(x-h), where ‘F’ is the same LQR gain as before, ‘L’ is an augmented version of the Laplacian matrix corresponding to the network topology, and ‘h’ is a desired state vector. In this case, it can be shown that (1) the stability margin after the interconnection cannot exceed the guaranteed stability margin of LQR control before the interconnection; (2) when each of the vehicles has a single integrator, the stability margin becomes the Laplacian matrix’s zero eigenvalue sensitivity’s inverse with a high chance when the sensitivity is large; and (3) there exists a computationally effective upper bound that estimates the stability margin to high accuracy. In addition, a generalized Laplacian matrix (still reflecting the network topology) can be designed for a (not necessarily symmetric) directed network, in a way to maximize the stability margin of the networked system via a LMI (linear matrix inequality) technique.
机译:经典控制器可以设计用于稳定的单个车辆,以确保一定的稳定性裕度。对于航空航天应用,稳定性裕度是一项重要指标,其理想值可在军事规范(例如MIL-STL-1797)中明确找到。众所周知,基于LQR(线性二次调节器)控制的车辆具有6 dB(增益裕度)和60度(相位裕度)的保证稳定裕度,因此根据MIL-STL具有理想的稳定裕度-1797。这里,LQR控件“ u”作为状态反馈控件给出,即u = Fx,其中“ F”是LQR增益,“ x”是状态向量。但是,如果出于某种目的(例如编队飞行)根据某个网络拓扑连接了多个基于LQR控制的车辆,那么在保证的稳定性裕度方面会发生什么?为了编队飞行,可以使用与一架飞机相同的LQR控制增益,但要乘以根据每架飞机的邻居计算出的相对状态矢量;这次的LQR控制u为u = FL(xh),其中“ F”是与以前相同的LQR增益,“ L”是对应于网络拓扑的拉普拉斯矩阵的增强版本,而“ h”是所需的状态向量。在这种情况下,可以证明:(1)互连后的稳定裕度不能超过互连前LQR控制的保证稳定裕度; (2)当每辆车都有一个积分器时,当灵敏度大时,稳定性裕度很有可能成为拉普拉斯矩阵的零特征值灵敏度的逆。 (3)存在计算上有效的上限,可以将稳定裕度估算为高精度。此外,可以通过LMI(线性矩阵不等式)技术最大化联网系统的稳定性裕度,从而为一个(不一定是对称的)定向网络设计通用的Laplacian矩阵(仍反映网络拓扑)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号