首页> 外文会议>European Frequency and Time Forum >The Leeson Effect: PM and AM noise and frequency stability in oscillators, including OEOs and lasers
【24h】

The Leeson Effect: PM and AM noise and frequency stability in oscillators, including OEOs and lasers

机译:Leeson效应:振荡器(包括OEO和激光器)的PM和AM噪声以及频率稳定性

获取原文

摘要

Simply stated, an oscillator consists of a loop in which a resonator sets the oscillation frequency and an amplifier compensates for the resonator loss. The oscillation amplitude is set by clipping or other gain-saturation mechanisms, usually in the amplifier. When phase noise is introduced in the loop, the oscillator converts it to frequency noise through a process of time-domain integration. The consequence is that the oscillator phase fluctuation diverges in the long run. The first part explains the phase-to-frequency conversion mechanism as a general phenomenon inherent in the feedback, following an heuristic approach based on physical insight. There follow the relationships between the noise of the internal components (sustaining amplifier, resonator, etc.) and the phase noise at the oscillator output, or equivalently the frequency stability. The second part is the analysis of the phase noise spectra found in the data-sheet of commercial oscillators: dielectric-resonator oscillator (DRO), whispering gallery oscillator (WGO), 5???100 MHz quartz crystal oscillators, opto-electronic oscillator (OEO). The analysis gives information on the most relevant design parameters, like the quality factor Q and the driving power of the resonator, and the flicker noise of the sustaining amplifier. The last part shows the derivation of the oscillator phase noise formulae from the elementary properties of the resonator. Interestingly, the amplitude non-linearity, necessary for the oscillation amplitude to be stable, splits the resonator relaxation time into two time constants. The approach shown in this last part is general. It applies to all oscillators, including quartz, RLC, microwave cavity, delay-line, laser, etc.
机译:简而言之,振荡器由一个环路组成,在环路中,一个谐振器设定振荡频率,一个放大器补偿谐振器损耗。通常在放大器中,通过削波或其他增益饱和机制来设置振荡幅度。当环路中引入相位噪声时,振荡器会通过时域积分过程将其转换为频率噪声。结果是,从长远来看,振荡器相位波动会发散。第一部分根据基于物理洞察力的启发式方法,将相频转换机制解释为反馈中固有的一般现象。遵循内部组件(保持放大器,谐振器等)的噪声与振荡器输出的相位噪声之间的关系,或等效地,频率稳定性之间的关系。第二部分是对商用振荡器数据手册中相位噪声频谱的分析:介电谐振振荡器(DRO),耳语回廊振荡器(WGO),5×100 MHz石英晶体振荡器,光电振荡器(OEO)。该分析给出了有关最相关设计参数的信息,例如品质因数Q和谐振器的驱动功率,以及维持放大器的闪烁噪声。最后一部分显示了从谐振器的基本特性推导振荡器相位噪声公式。有趣的是,振幅非线性是振荡振幅稳定所必需的,它将谐振器弛豫时间分为两个时间常数。最后一部分显示的方法是通用的。它适用于所有振荡器,包括石英,RLC,微波腔,延迟线,激光器等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号