【24h】

AEROELASTIC BEHAVIOR OF COMPOSITE WINGS IN POSTBUCKLING REGIME

机译:后屈曲系统中复合材料翼的气动弹性行为

获取原文
获取外文期刊封面目录资料

摘要

The use of composite materials in aircraftmanufacturing is increasing due to theadvantages they offer in terms of high strengthand low weight. In addition, if the compositeparts are designed to work in the postbucklingregime, the weight savings and the loadcarrying capacity can be increased. Typicalstructures that can take advantage of this typeof design are stringer-stiffened panels used inwings and fuselages. In the postbucklingregime, these structures show changes in thestress distribution and also reduction of stiffnessdue to geometric nonlinear effects. These effectsmay change the dynamic characteristics of thestructure, such as the natural frequencies andmode shapes, which may consequently causechanges in the aeroelastic behavior of thestructure. Several studies have been made toinvestigate the influence of geometric nonlineareffects on the flutter speed of composite panelsand high-aspect ratio wings, showing that theseeffects can have significant influence on theflutter speed and dynamic aeroelastic response.In this paper, a study of the aeroelastic behaviorof a composite wing structure designed to workin the postbuckling regime is presented. A set offlight conditions including symmetricmaneuvers are considered to obtain the designloads. A sizing process is developed to set thedimensions of ribs, spars, skin panels andstringers allowing buckling on the skin panels.A finite element model is used to model the wingstructure. The analysis model is generated bythe parametric finite element modeling toolMODGEN. Based on a set of input parameters,an aeroelastic model composed of structuraland aerodynamic models are automatically generated. The MSC-NASTRAN solver is usedto simulate the response of the structureconsidering the geometric nonlinearitiesnecessary to model the behavior in thepostbuckling regime, and also to calculate thesteady and unsteady aerodynamic loads by theDoublet-Lattice Method.
机译:复合材料在飞机上的使用 由于 他们在高强度方面提供的优势 重量轻。另外,如果复合 零件设计用于后屈曲 方式,减轻重量和减轻负荷 承载能力可以提高。典型的 可以利用这种类型的结构 设计中使用的是加劲肋的面板 机翼和机身。在后屈曲中 政权,这些结构显示了变化 应力分布并降低刚度 由于几何非线性效应。这些影响 可能会改变 结构,例如固有频率和 模式形状,因此可能会导致 空气弹性行为的变化 结构体。已经进行了一些研究 研究几何非线性的影响 对复合板扑动速度的影响 和高纵横比的机翼,表明这些 效果可能对 颤振速度和动态气动弹性响应。 本文对空气弹性行为进行了研究 设计用于工作的复合机翼结构 在后屈曲制度中提出。一套 包括对称在内的飞行条件 通过演习来获得设计 负载。开发了一个大小调整过程来设置 肋骨,翼梁,蒙皮的尺寸和 纵梁允许在面板上弯曲。 有限元模型用于机翼建模 结构体。分析模型是通过以下方式生成的 参数化有限元建模工具 MODGEN。根据一组输入参数, 由结构组成的气动模型 并自动生成空气动力学模型。使用MSC-NASTRAN求解器 模拟结构的响应 考虑几何非线性 建模行为的必要条件 后屈曲制度,并计算 稳定的和不稳定的空气动力载荷 双重格子法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号