【24h】

On the Erdoes Discrepancy Problem

机译:关于鄂尔多斯差异问题

获取原文

摘要

According to the Erdos discrepancy conjecture, for any infinite ±1 sequence, there exists a homogeneous arithmetic progression of unbounded discrepancy. In other words, for any ±1 sequence (x_1, x_2, ...) and a discrepancy C, there exist integers m and d such that | ∑_(i=1)~m x_(i·d)| > C. This is an 80-year-old open problem and recent development proved that this conjecture is true for discrepancies up to 2. Paul Erdos also conjectured that this property of unbounded discrepancy even holds for the restricted case of completely multiplicative sequences, namely sequences (x_1,x_2,...) where x_ (a·b)= x_a · x_b for any a,b ≥ 1. The longest such sequence of discrepancy 2 has been proven to be of size 246. In this paper, we prove that any completely multiplicative sequence of size 127,646 or more has discrepancy at least 4, proving the ErdSs discrepancy conjecture for discrepancy up to 3. In addition, we prove that this bound is tight and increases the size of the longest known sequence of discrepancy 3 from 17,000 to 127,645. Finally, we provide inductive construction rules as well as streamlining methods to improve the lower bounds for sequences of higher discrepancies.
机译:根据鄂尔多斯差异猜想,对于任何无限的±1序列,都存在无界差异的齐次算术级数。换句话说,对于任何±1序列(x_1,x_2,...)和差异C,存在整数m和d,使得| ∑_(i = 1)〜m x_(i·d)| > C.这是一个有80年历史的开放性问题,最近的发展证明,这种猜想对不超过2的差异是正确的。保罗·埃尔多斯也猜想,这种无界差异的性质甚至对于完全乘法序列的受限制情况也成立,即序列(x_1,x_2,...),其中对于任何a,b≥1,x_(a·b)= x_a·x_b。最长的此类差异2序列已被证明大小为246。在本文中,我们证明任何大小等于或大于127,646的完全相乘的序列至少有4个差异,证明了差异的ErdSs差异猜想到3。此外,我们证明了这个边界是紧密的,并且增加了最长的已知差异序列的大小3从17,000到127,645。最后,我们提供归纳构造规则以及简化方法,以提高较高差异序列的下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号