首页> 外文会议>Conference on imaging spectrometry >Lessons and Key Results from 30 Years of Imaging Spectroscopy
【24h】

Lessons and Key Results from 30 Years of Imaging Spectroscopy

机译:30年成像光谱学的经验教训和主要成果

获取原文

摘要

Spectroscopy was first used in 1814 by Joseph von Fraunhofer as a scientific method for discovery, and to develop and test scientific hypotheses. From this beginning, spectroscopy evolved to a broadly used analytical tool for both science and applications. In the 1970's, technology began to enable a class of instruments that measure spectra for every point in an image. The first airborne imaging spectrometer developed at the Jet Propulsion Laboratory flew in 1982. Subsequently, a wide range of imaging spectrometers have been developed, many at the Jet Propulsion Laboratory, for airborne and space platforms and they have participated in NASA mission throughout the solar system. A key lesson over this time period has been the broad applicability of imaging spectrometers to pursue a range of science and application objectives wherever there is relevant signal in the spectral range from the ultra violet to the thermal infrared. As with all optical imaging instruments, imaging spectrometers have spectral, radiometric and spatial characteristics and related requirements. Of these, uniformity, radiometric precision, and calibration have been identified as critically important for the science and application utility of imaging spectrometer instruments. These key requirements are enabling for the most advanced imaging spectrometer algorithms that retrieve parameters with units and quantifiable uncertainties. The current trend in imaging spectrometer instrumentation is for broader spectral coverage and wider swath while improving uniformity, precision, and calibration. A companion emphasis is for lower mass, power and volume, with instruments taking advantage of the latest detector, optical, electronics and computational technologies. The number of imaging spectrometers in use is increasing every year and this trend is on track to continue.
机译:光谱学于1814年由约瑟夫·冯·弗劳恩霍夫(Joseph von Fraunhofer)首次用作发现,发展和检验科学假设的科学方法。从一开始,光谱学就发展成为一种广泛用于科学和应用程序的分析工具。在1970年代,技术开始使人们能够使用一类仪器来测量图像中每个点的光谱。 1982年,喷气推进实验室研制出了第一台机载成像光谱仪。随后,喷气推进实验室开发了许多用于机载和太空平台的成像光谱仪,它们参与了整个太阳系的NASA任务。 。在这段时间里,一个关键的教训是成像光谱仪的广泛适用性,无论在从紫外线到热红外的光谱范围内,只要有相关信号,就可以追求一系列科学和应用目标。与所有光学成像仪器一样,成像光谱仪具有光谱,辐射度和空间特性以及相关要求。其中,均匀度,辐射精度和校准已被确定对于成像光谱仪仪器的科学和应用效用至关重要。这些关键要求使最先进的成像光谱仪算法能够检索具有单位和可量化不确定性的参数。成像光谱仪仪器的当前趋势是在提高均匀性,精度和校准的同时,获得更大的光谱覆盖范围和更宽的覆盖范围。伴随的重点是降低重量,功率和体积,同时利用最新的检测器,光学,电子和计算技术的仪器。使用的成像光谱仪的数量每年都在增加,并且这种趋势有望继续下去。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号