首页> 外文会议>Seminar on New Trends in Research of Energetic Materials >Atomistic simulation of the temperature dependence of density and van-der-Waals interactions of binders, plasticizers and mixtures of them
【24h】

Atomistic simulation of the temperature dependence of density and van-der-Waals interactions of binders, plasticizers and mixtures of them

机译:粘合剂,增塑剂及其混合物的密度和范德华相互作用的温度依赖性的原子模拟

获取原文

摘要

The intermolecular energetic interactions between binders, plasticizers and fillers in elastomer bonded composite rocket propellants (CRP) and elastomer bonded high explosives charges (HEC) (some of the PBX family) control the glass-to-rubber transition in these elastomer systems. Therefore they are of great interest to explain the glass to rubber transition and to help to elucidate the different binder fractions and their specialized hindrances in molecular mobility. In a first step the van-der-Waals and electrostatic interactions between binders and plasticizers will be considered. Using the program package Materials Studio™ (MS) version 6 of company Accelrys an atomistic simulation of such interactions is possible. The substances used are hydroxyl terminated polybutadiene (HTPB), dioctyl adipate (DOA) and polypropylene oxide (PPO), which serves as a first step towards GAP (glycidyl azide polymer). Uncured binders are considered first. For energetic equilibration of the molecules and of the configuration to each other and then for the calculation of all the energy terms, molecular dynamics simulations were performed with the program part Forcite of MS in NPT ensembles in periodic unit cell, a cube with isotropic liquid systems. The pressure was set to 1 bar by controlling with a Berendsen barostat and the temperature was maintained to the wished values in the range of +120°C to -150°C with an Andersen thermostat. From the obtained NPT structures of the molecular systems the cohesive energy densities were calculated, from which the intermolecular energetic parts can be extracted. The temperature dependent calculations are used to point the glass-to-liquid transition in the systems.
机译:弹性体结合的复合火箭推进剂(CRP)和弹性体结合的高炸药装药量(HEC)(某些PBX系列)中的粘合剂,增塑剂和填充剂之间的分子间能量相互作用控制了这些弹性体系统中的玻璃橡胶过渡。因此,他们对解释玻璃到橡胶的转变以及帮助阐明不同的粘合剂组分及其在分子迁移中的特殊障碍具有极大的兴趣。第一步,将考虑粘合剂和增塑剂之间的范德华力和静电相互作用。使用Accelrys公司的程序包Materials Studio™(MS)版本6,可以对这种相互作用进行原子模拟。所使用的物质是羟基封端的聚丁二烯(HTPB),己二酸二辛酯(DOA)和聚环氧丙烷(PPO),它们是通向GAP(缩水甘油基叠氮化物聚合物)的第一步。首先考虑未固化的粘合剂。为了使分子和构型彼此进行能量平衡,然后计算所有能量项,使用程序部分Forcite的MS在Forceite中以周期性单位晶格(具有各向同性液体系统的立方)在NPT集合中进行了分子动力学模拟。通过用贝伦森(Berendsen)恒压器进行控制将压力设置为1 bar,并使用安德森(Andersen)恒温器将温度保持在+ 120°C至-150°C的期望值。从获得的分子系统的NPT结构中,计算出内聚能密度,从中可以提取分子间的高能部分。温度相关的计算用于指出系统中玻璃到液体的转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号