首页> 外文会议> >DESIGN AND IMPLEMENTATION OF AN INTENSIFIED COPRECIPITATION REACTOR FOR THE TREATMENT OF LIQUID RADIOACTIVE WASTES
【24h】

DESIGN AND IMPLEMENTATION OF AN INTENSIFIED COPRECIPITATION REACTOR FOR THE TREATMENT OF LIQUID RADIOACTIVE WASTES

机译:液体放射性废料强化共沉淀反应器的设计与实现

获取原文

摘要

The coprecipitation is a robust and inexpensive process for the treatment of important volumes of low and intermediate radioactive level liquid wastes. Its major inconvenient is the huge volume of sludge generated. The purpose of this work is to optimize the industrial coprecipitation continuous process by achieving the following objectives: 1. maximize the decontamination efficiency; 2. minimize the volume of sludge generated by the process; 3. reduce the treatment cost decreasing the installation volume. An innovative reactor with an infinite recycling ratio was therefore designed. It is a multifunctional reactor composed of two zones: a perfectly mixed precipitation zone and a classifier to perform liquid-solid separation. The experiments are focused on the coprecipitation of strontium by barium sulphate. The effluent containing sulphate ions and the barium nitrate solution are injected in the reaction zone where strontium and barium coprecipitate as sulphates. The produced solid phase is returned into the reaction zone by the classifier and goes out slowly from the reactor bottom with a residence time much higher than the liquid phase. This creates both a high concentration of solid phase in the reaction zone and a high efficiency of decontamination. The experimental conditions simulate the industrial effluents. The total treatment flow rate is 17 L/h, with an effluent flow rate of 16 L/h and a reactive flow rate of 1 L/h, hence a mean residence time of 10 minutes. In these experimental conditions, the molar ratio sulphate/barium after mixing corresponds to 4.9. These conditions are used in the reprocessing plant of La Hague. The decontamination factor reached in these experimental conditions is excellent: DF=1500. The decontamination factor obtained with the classical continuous process is only equal to 60. Different process parameters are studied in order to optimize the reactor/classifier: residence time, barium nitrate flow rate and racking flow rate. The decrease of barium nitrate flow rate reduces the volume of sludge generated by the process keeping a high efficiency of strontium decontamination: DF=400. An excess of sulphate is necessary to perform an efficient decontamination, but the molar ratio sulphate/barium can be reduced to 3 instead of 4.9 used industrially. The reactor/classifier also represents an efficient device for the coprecipitation process intensification. Indeed, it can sensibly reduce the final installation size while treating important volume of effluents. This innovative reactor optimizes both the decontamination efficiency of radioactive liquid wastes and the reduction of sludge volume. A reduction of sulphate ions in the discharge is also possible, which is environmentally friendly.
机译:共沉淀是一种用于处理大量中,低放射性水平废液的稳健而廉价的方法。其主要的不便之处是产生了大量的污泥。这项工作的目的是通过实现以下目标来优化工业共沉淀的连续过程:1.最大化去污效率; 2.最小化过程中产生的污泥量; 3.降低处理成本,减少安装量。因此,设计了具有无限回收率的创新反应器。它是一个多功能反应器,由两个区域组成:完美混合的沉淀区域和进行液固分离的分级器。实验集中在硫酸钡与锶的共沉淀上。将含硫酸根离子的流出物和硝酸钡溶液注入反应区,锶和钡共沉淀为硫酸盐。所产生的固相通过分级机返回到反应区中,并从反应器底部缓慢流出,停留时间比液相长得多。这既在反应区中产生了高浓度的固相,又产生了高的净化效率。实验条件模拟了工业废水。总处理流速为17 L / h,废水流速为16 L / h,反应流速为1 L / h,因此平均停留时间为10分钟。在这些实验条件下,混合后硫酸盐/钡的摩尔比等于4.9。这些条件用于拉海牙的后处理厂。在这些实验条件下达到的去污系数非常好:DF = 1500。经典连续工艺获得的去污因子仅为60。研究了不同的工艺参数以优化反应器/分级机:停留时间,硝酸钡流量和机架流量。硝酸钡流量的减少减少了由该过程产生的污泥量,从而保持了高的锶去污效率:DF = 400。要进行有效的去污,需要过量的硫酸盐,但是硫酸盐/钡的摩尔比可以降低至3,而不是工业上使用的4.9。反应器/分级器也代表了用于共沉淀过程强化的有效装置。实际上,它可以合理地减小最终安装尺寸,同时处理大量废水。这种创新的反应器既优化了放射性液体废物的去污效率,又减少了污泥量。减少放电中的硫酸根离子也是可能的,这是环境友好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号