首页> 外文会议>International conference on space operations >Lithium Ion Battery Management Strategies for European Space Operations Centre Missions
【24h】

Lithium Ion Battery Management Strategies for European Space Operations Centre Missions

机译:欧洲太空运行中心任务的锂离子电池管理策略

获取原文

摘要

Effective battery management on a space mission is one of the key factors in ensuring mission success and longevity. Given the reliability of modern spacecraft, the unavoidable ageing of batteries can become a critical life-limiting factor. To improve this, it is necessary to have a strategy for management and monitoring of spacecraft batteries that is tailored to both the mission profile and the battery technology in use. This paper will focus on several missions flown from the European Space Agency's (ESA) European Space Operations Centre (ESOC) in Darmstadt, Germany. The main case studies in this paper focus on missions that regularly use their Lithium Ion batteries, although a summary of other missions that contain Lithium Ion batteries will also be presented. Lithium Ion batteries are currently the prevailing battery technology in use on current and future European Space Agency missions. The paper will begin with an overview of the Lithium Ion battery technology that has largely replaced all others for modern space batteries. Their proper management requires different techniques compared to previous space battery technologies; for instance compared to the previous Nickel-Cadmium technology, Lithium Ion battery deep discharges should be avoided where possible - which increases the risk of using deep discharges to measure degradation. The paper will describe the characteristics and influencing factors of Lithium Ion battery degradation, along with an overview of research aimed at prolonging lifetime of the batteries. The paper will also summarise methods available in order to measure the absolute or relative degradation of Lithium Ion batteries and the limitations of these methods based upon the capabilities of each spacecraft and the mission profile. The paper will then detail the actual operational implementation of this information on two representative ESA missions. The first case study will be Mars Express, which has been flying three Lithium Ion batteries for ten years and using them for prolonged eclipse seasons 2-3 times per year. The power demand of the spacecraft is high and the available margin in the power system is low, therefore modelling and management of the batteries is critical to the mission. The second case study will be ESA's CryoSat-2 mission, which has been flying a single Lithium Ion battery for 4 years. The battery is younger, and the power system has more margin but eclipse seasons are an almost constant feature of the routine mission (albeit with varying duration eclipses). In addition, the satellite flies in a non-sun-synchronous orbit, which makes the assessment of the expected state of battery charge more difficult. An overview of the techniques used on other flying ESOC missions will also be presented (Herschel, Planck, GOCE, Venus Express and Rosetta). The paper will describe new operations that have been introduced to manage the degradation of the batteries, including specially designed settings that, while respecting the allowed usage profile of the battery, modify the charge and discharge management strategies and other flight operations to almost halve the rate of degradation compared with the worst-case design assumption. In addition, the methods used by each mission to assess absolute and/or relative battery degradation in flight will be discussed. The paper will conclude with an overview of the lessons that have been learnt so far at ESOC from missions flying Lithium Ion batteries. These lessons could be used as a model for current and future operators of spacecraft with Lithium Ion batteries on how to best manage their batteries for longevity, mission reliability and success.
机译:太空任务的有效电池管理是确保任务成功和长寿的关键因素之一。鉴于现代航天器的可靠性,不可避免的电池老化会成为关键的寿命限制因素。为了改善这一点,有必要制定一种适用于飞行任务电池组的管理和监视策略,以适应任务概况和所使用的电池技术。本文将重点介绍欧洲航天局(ESA)在德国达姆施塔特(Darmstadt)进行的几次飞行任务。本文的主要案例研究集中于定期使用其锂离子电池的任务,尽管还将概述其他包含锂离子电池的任务。锂离子电池是当前和未来欧洲航天局飞行任务中使用的主流电池技术。本文将首先概述锂离子电池技术,该技术已在很大程度上取代了所有其他现代太空电池。与以前的太空电池技术相比,他们的适当管理需要不同的技术。例如,与以前的镍镉技术相比,应尽可能避免锂离子电池的深度放电-这会增加使用深度放电测量劣化的风险。本文将描述锂离子电池降解的特性和影响因素,并针对旨在延长电池寿命的研究进行概述。本文还将概述可用于测量锂离子电池的绝对或相对退化的方法,以及基于每个航天器的能力和任务概况而确定的这些方法的局限性。然后,本文将详细介绍在两个有代表性的ESA任务中该信息的实际操作实施情况。第一个案例研究将是“火星快车”(Mars Express),该机已经使用了三节锂离子电池飞行了十年,并且每年将它们在延长的蚀食季节中使用2-3次。航天器的电力需求很高,电力系统中的可用裕度也很低,因此电池的建模和管理对于任务至关重要。第二个案例研究将是ESA的CryoSat-2任务,该任务已经使用单个锂离子电池飞行了4年。电池更年轻,动力系统具有更大的余量,但是蚀食季节几乎是例行任务的不变特征(尽管蚀蚀的持续时间各不相同)。另外,卫星在非太阳同步轨道上飞行,这使得评估电池充电的预期状态更加困难。还将概述其他ESOC飞行任务中使用的技术(Herschel,Planck,GOCE,Venus Express和Rosetta)。本文将介绍为管理电池退化而引入的新操作,包括专门设计的设置,这些设置在遵守电池的允许使用情况的同时,修改了充电和放电管理策略以及其他飞行操作,以将速率几乎减半与最坏情况的设计假设相比的性能下降。此外,还将讨论每个任务用于评估飞行中绝对和/或相对电池退化的方法。本文最后将概述在ESOC迄今为止从飞行锂离子电池的飞行任务中学到的经验教训。这些课程可以用作当前和未来使用锂离子电池的航天器操作员的模型,以了解如何最佳地管理其电池以延长寿命,任务可靠性和取得成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号