首页> 外文会议>International conference on space operations >Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter
【24h】

Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

机译:科学策划实施与挑战的外阴痕量气体轨道

获取原文

摘要

The ExoMars mission is a joint programme of the European Space Agency (ESA) and the Russian space agency Roscosmos. One element of the overall programme is the 2016 Trace Gas Orbiter (TGO) spacecraft which launched on 14 March 2016 and successfully entered Mars orbit on 19 October 2016. From this initial Mars capture orbit, the spacecraft has now completed an aerobraking phase in order to reduce the orbital period to approximately 2 hours and to a quasi-circular orbital distance of -400km from the Martian surface. The primary science phase of the mission is performed from this orbit and started in April 2018, lasting for a nominal duration of 1 Martian year. The primary scientific objectives of the mission are the detection and characterization of trace gases in the Martian atmosphere, plus the study of Martian climatology, surface geology and sub-surface ice detection. To this end the TGO spacecraft consists of the following 4 Principle Investigator (PI) led instruments: The Atmospheric Chemistry Suite (ACS), The Colour and Stereo Surface Imaging System (CaSSIS), The Fine Resolution Epithermal Neutron Detector (FREND) and The Nadir and Occupation for Mars Discovery instrument (NOMAD). The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occupation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning infrastructure, processes and automation in order to support science planning of this scale throughout the TGO mission. We also detail how the re-use and further development of ESA's multi-mission planning software tool is being implemented in order to provide the necessary additional functionality for the SOC's planning team to exploit, and to therefore ensure the optimum scientific return of the TGO mission. Finally, we provide an overview and status of the real science planning activities taking place in the first weeks of the nominal science phase in the first half of 2018.
机译:Exomars Mission是欧洲航天局(ESA)和俄罗斯空间机构Roscosmos的联合计划。整体计划的一个元素是2016年3月14日推出的2016次痕量气体轨道飞行器(TGO)航天器于2016年3月14日发布,并于2016年10月19日成功进入火星轨道。从这个初始火星捕获轨道,航天器现在已经完成了一个充气阶段,以便将轨道周期减少到大约2小时,从火星表面到400km的准圆形轨道距离。特派团的主要科学阶段是从这个轨道进行的,并于2018年4月开始,持续一个火星一年的名义持续时间。特派团的主要科学目标是火星氛围中的痕量气体的检测和表征,加上火星气候学,表面地质和亚表面冰检测的研究。为此,TGO航天器由以下4个原理调查仪(PI)LED仪器组成:大气化学套件(ACS),颜色和立体表面成像系统(CASSIO)(CASSIS),细分辨率曲线中子探测器(FREND)和Nadir和占领火星发现仪器(游牧民族)。 Exomars科学运营中心(SoC)位于西班牙马德里的ESA欧洲空间天文中心(ESAC),负责协调TGO的科学规划活动,以优化特派团的科学回归。根据科学工作团队(SWT)科学优先事项,以及与PI Science Teams和ESA的使命运营中心(MOC)协调,这是一个科学观察计划,并为上行链路和执行提供冲突的运营产品的协调 - 木板。为实现这一目标,SoC基于长期,中期和短期计划周期使用规划概念。长期规划涵盖了几个月的使命部分,在执行前几个月进行。鉴于科学优先事项和预期的使命简介,它的目标是建立一个可行的科学观察战略。中期规划涵盖一个1个月的任务分部,并在执行前3到2个月进行,虽然短期计划涵盖1周的部分,并在执行前期到1周进行。中期和短期计划的目标是在运作和验证长期计划,使得SoC可以向MOC A冲突航天器指向简介请求(中期规划可交付),以及最终仪器电信产品(短期术语规划可交付),使得科学计划是实现的,并且满足了所有运行约束。凭借2小时400公里的科学轨道,广大太阳能占用,NADIR测量和表面成像机会,结合额外的任务约束,如必要的TGO通信插槽,以支持exoMars 2020流浪者和地表平台特派团和美国宇航局表面资产,创造了一个相当数量和复杂性的科学规划任务。在本文中,我们详细介绍了SoC如何开发和实施必要的规划基础设施,流程和自动化,以便在整个TGO任务中支持这一规模的科学规划。我们还详细介绍了如何实施ESA的多关联计划软件工具的重复使用和进一步发展,以便为SoC的规划团队提供必要的额外功能,并因此确保TGO使命的最佳科学回报。最后,我们在2018年上半年在名义上的科学阶段的第一周进行了真实科学策划活动的概要和地位。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号