首页> 外文会议>International pipeline conference >BRITTLE FRACTURE ARREST IN HIGH CHARPY ENERGY STEELS - COMPARISONS WITH SOME EXISTING DATA
【24h】

BRITTLE FRACTURE ARREST IN HIGH CHARPY ENERGY STEELS - COMPARISONS WITH SOME EXISTING DATA

机译:高脆性能量钢的脆性断裂逮捕-与现有数据的比较

获取原文

摘要

Current line-pipe steels have significantly higher Charpy upper-shelf energy than older steels. Many newer line-pipe steels have Charpy upper-shelf energy in the 300 to 500J range, while older line-pipe steels (pre-1970) had values between 30 and 60J. With this increased Charpy energy comes two different and important aspects of how to predict the brittle fracture arrestability for these new line-pipe steels. The first aspect of concern is that the very high Charpy energy in modern line-pipe steels frequently produces invalid results in the standard pressed-notch DWTT specimen. Various modified DWTT specimens have been used in an attempt to address the deficiencies seen in the PN-DWTT procedure. In examining fracture surfaces of various modified DWTT samples, it has been found that using the steady-state fracture regions with similitude to pipe burst test (regions with constant shear lips) rather than the entire API fracture area, results collapse to one shear area versus temperature curve for all the various DWTT specimens tested. Results for several different materials will be shown. The difficulty with this fracture surface evaluation is that frequently the standard pressed-notch DWTT only gives valid transitional fracture data up to about 20-percent shear area, and then suddenly goes to 100-percent shear area. The second aspect is that with the much higher Charpy energy, the pipe does not need as much shear area to arrest a brittle fracture. Some analyses of past pipe burst tests have been recently shown and some additional cases will be presented. This new brittle fracture arrest criterion means that one does not necessarily have to specify 85-percent shear area in the DWTT all the time, but the shear area needed for brittle fracture arrest depends on the pipeline design conditions (diameter, hoop stress) and the Charpy upper-shelf energy of the steel. Sensitivity studies and examples will be shown.
机译:当前的管线钢比夏普钢具有更高的夏比上架能量。许多较新的管线管钢的夏比上架能量在300至500J范围内,而较旧的管线管钢(1970年前)的值在30至60J之间。随着夏比能量的增加,如何预测这些新型管线钢的脆性断裂停滞性来自两个不同而重要的方面。首先要关注的是,现代管线管钢中很高的夏比能量经常会在标准压痕DWTT试样中产生无效的结果。为了解决PN-DWTT程序中发现的缺陷,已使用了各种改良的DWTT标本。在检查各种改性DWTT样品的断裂表面时,发现使用与管爆裂试验相似的稳态断裂区域(具有恒定剪切唇的区域)而不是整个API断裂区域,结果塌陷至一个剪切区域所有测试的各种DWTT样品的温度曲线。将显示几种不同材料的结果。这种断裂面评估的困难在于,标准的压痕DWTT通常只能给出有效的过渡断裂数据,直到大约20%的剪切面积,然后突然达到100%的剪切面积。第二个方面是,由于具有更高的夏比能量,该管不需要那么大的剪切面积即可阻止脆性断裂。最近显示了对过去管道爆破测试的一些分析,并将介绍其他一些情况。这一新的脆性裂缝止裂准则意味着,不必始终在DWTT中指定85%的剪切面积,但脆性裂缝止裂所需的剪切面积取决于管线的设计条件(直径,环向应力)和钢的夏比上架能量。将显示敏感性研究和示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号