首页> 外文会议>ASME international conference on energy sustainability >ADVANCING TOWARD SUSTAINABILITY GOALS AT THE UNIVERSITY OF CALIFORNIA, IRVINE
【24h】

ADVANCING TOWARD SUSTAINABILITY GOALS AT THE UNIVERSITY OF CALIFORNIA, IRVINE

机译:在加利福尼亚州加利福尼亚大学推进可持续发展目标

获取原文

摘要

The carbon reduction and sustainability goals of the University of California, Irvine require increased penetrations of intermittent renewables on the campus microgrid. These increased intermittent renewables create operational challenges related to conventional energy resources. To study these operational challenges, a holistic campus resource dispatch model was developed. The campus energy resources consist of a microgrid with ten 12 kV circuits emanating from one substation, 4 MW of solar photovoltaic, a central combined heat and power plant (19 MW), a district heating and cooling system, and an electric chiller-thermal energy storage system that provide electricity, heat, and cooling. The holistic model includes dynamic models of the combined heat and power (CHP) plant, the electric chiller-thermal energy storage system, and various renewable resources. In addition, models for complimentary technologies were also created to investigate their potential to increase renewable penetration on the campus microgrid. These include battery energy storage, demand response, and energy efficiency. Simulations with the holistic campus resource model revealed several important conclusions: (1) Regardless of renewable resource type, impacts on the CHP plant remains the same, i.e., increased renewable penetrations create reduced CHP plant capacity factors; (2) Local two axis CPV provides lower costs of electricity than local fixed PV at renewable penetrations below 23% after which local fixed PV provides a lower cost of electricity (3) Introduction of a battery into the campus microgrid achieves higher renewable penetrations and improves the operation of CHP plant; and (4) Electric energy storage does not always prove cost effective (i.e., At low renewable penetrations, electric energy storage is not cost effective; At 17% renewable penetration, electric energy storage begins to become cost effective).
机译:加州大学尔湾分校的碳减排和可持续性目标要求在校园微电网上增加间歇性可再生能源的渗透率。这些不断增加的间歇性可再生能源带来了与常规能源相关的运营挑战。为了研究这些运营挑战,开发了一个整体的校园资源分配模型。校园能源包括一个微电网,该微电网具有从一个变电站发出的十个12 kV电路,4 MW太阳能光伏发电,中央热电联产电厂(19 MW),区域供热和制冷系统以及电制冷机-热能提供电力,热量和冷却的存储系统。整体模型包括热电联产(CHP)厂,电冷水机组-热能存储系统以及各种可再生资源的动态模型。此外,还创建了免费技术模型,以研究其在校园微电网上提高可再生能源渗透率的潜力。这些包括电池能量存储,需求响应和能源效率。用整体校园资源模型进行的仿真揭示了几个重要的结论:(1)不管可再生资源的类型如何,对CHP电厂的影响都保持不变,即,可再生能源渗透率的提高会降低CHP电厂的产能因子。 (2)当可再生能源渗透率低于23%时,本地两轴CPV的电力成本要低于本地固定PV,此后本地固定PV的电力成本更低(3)将电池引入园区微电网可实现更高的可再生能源渗透率并提高热电联产工厂的运营; (4)电能存储并不总是证明具有成本效益(即,在可再生能源普及率较低时,电能存储并不具有成本效益;在可再生能源渗透率达到17%时,电能存储开始变得具有成本效益)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号