首页> 外文会议>ASME joint US-European Fluids Engineering Division summer meeting >NUMERICAL INVESTIGATION OF LOW-REYNOLDS NUMBER AIRFOIL FLOWS USING TRANSITION-SENSITIVE AND FULLY TURBULENT RANS MODELS
【24h】

NUMERICAL INVESTIGATION OF LOW-REYNOLDS NUMBER AIRFOIL FLOWS USING TRANSITION-SENSITIVE AND FULLY TURBULENT RANS MODELS

机译:过渡敏感和全湍流RANS模型对低雷诺数翼型流动的数值研究

获取原文

摘要

A numerical analysis is performed to study the pre-stall and post-stall aerodynamic characteristics over a group of six airfoils using commercially available transition-sensitive and fully turbulent eddy-viscosity models. The study is focused on a range of Reynolds numbers from 6 × 10~4 to 2 × 10~6, wherein the flow around the airfoil is characterized by complex phenomena such as boundary layer transition, flow separation and reattachment, and formation of laminar separation bubbles on either the suction, pressure or both surfaces of airfoil. The predictive capability of the transition-sensitive k-k_L-ω model versus the fully turbulent SST k-ω model is investigated for all airfoils. The transition-sensitive k-k_L-ω model used in this study is capable of predicting both attached and separated turbulent flows over the surface of an airfoil without the need for an external linear stability solver to predict transition. The comparison between experimental data and results obtained from the numerical simulations is presented, which shows that the boundary layer transition and laminar separation bubbles that appear on the suction and pressure surfaces of the airfoil can be captured accurately by the use of a transition-sensitive model. The fully turbulent SST k-ω model predicts a turbulent boundary layer on both surfaces of the airfoil for all angles of attack and fails to predict boundary layer transition or separation bubbles. Discrepancies are observed in the predictions of airfoil stall by both the models. Reasons for the discrepancies between computational and experimental results, and also possible improvements in eddy-viscosity models, are discussed.
机译:进行了数值分析,以使用市场上可获得的过渡敏感和完全湍流的涡流粘度模型研究一组六个机翼的失速前和失速后的空气动力特性。该研究集中在雷诺数从6×10〜4到2×10〜6的范围内,其中翼型周围的流动以边界层过渡,流动分离和重新附着以及层状分离的形成等复杂现象为特征。机翼的吸力,压力或两个表面上都出现气泡。对于所有机翼,研究了过渡敏感型k-k_L-ω模型相对于完全湍流的SSTk-ω模型的预测能力。本研究中使用的对过渡敏感的k-k_L-ω模型能够预测翼型表面上附着的和分离的湍流,而无需外部线性稳定性求解器来预测过渡。进行了实验数据与数值模拟结果的比较,结果表明,通过使用过渡敏感模型,可以准确地捕获出现在翼型吸力和压力表面上的边界层过渡和层流分离气泡。 。完全湍流的SSTk-ω模型预测了所有迎角下翼型两个表面上的湍流边界层,而无法预测边界层的过渡或分离气泡。两种模型在机翼失速的预测中均观察到差异。讨论了计算结果与实验结果之间差异的原因,以及涡流粘度模型的可能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号