首页> 外文会议>Conference on optical and infrared interferometry >The GRAVITY spectrometers - Optical Qualification
【24h】

The GRAVITY spectrometers - Optical Qualification

机译:GRAVITY光谱仪-光学鉴定

获取原文

摘要

GRAVITY is a 2nd generation Very Large Telescope Interferometer (VLTI) operated in the astronomical K-band. In the Beam Combiner Instrument (BCI) four Fiber Couplers (FC) will feed the light coming from each telescope into two fibers, a reference channel for the fringe tracking spectrometer (FT) and a science channel for the science spectrometer (SC). The differential Optical Path Difference (dOPD) between the two channels will be corrected using a novel metrology concept. The metrology laser will keep control of the dOPD of the two channels. It is injected into the spectrometers and detected at the telescope level. Piezo-actuated fiber stretchers correct the dOPD accordingly. Fiber-fed Integrated Optics (IO) combine coherently the light of all six baselines and feed both spectrometers. Assisted by Infrared Wavefront Sensors (IWS) at each Unit Telescope (UT) and correcting the path difference between the channels with an accuracy of up to 5 nm, GRAVITY will push the limits of astrometrical accuracy to the order of 10 μas and provide phase-referenced interferometric imaging with a resolution of 4 mas. The University of Cologne developed, constructed and tested both spectrometers of the camera system. Both units are designed for the near infrared (1.95 - 2.45 μm) and are operated in a cryogenic environment. The Fringe Tracker is optimized for highest transmission with fixed spectral resolution (R = 22) realized by a double-prism. The Science spectrometer is more diverse and allows to choose from three different spectral resolutions (R = [22, 500, 4000]), where the lowest resolution is achieved with a prism and the higher resolutions are realized with grisms. A Wollaston prism in each spectrometer allows for polarimetric splitting of the light. The goal for the spectrometers is to concentrate at least 90% of the flux in 2 × 2 pixel (36 × 36 μm~2) for the Science channel and in 1 pixel (24 × 24 μm) in the Fringe Tracking channel. In Section 1, we present the arrangement, direction of spectral dispersion and shift of polarization channels for both spectrometers, and the curvature of the spectra in the science spectrometer. In Section 2 we determine the best focus position of the detectors. The overall contrast of images at different positions of the detector stage is computed with the standard deviation of pixel values in the spectra containing region. In Section 3 we analyze high dynamic range images for each spectrometer and resolution obtained at the afore determined best focus positions. We deduce the ensquared energy from the FWHM of Gaussian fits perpendicular to the spectra.
机译:GRAVITY是在天文K波段工作的第二代超大型望远镜干涉仪(VLTI)。在光束组合器仪器(BCI)中,四个光纤耦合器(FC)将把来自每个望远镜的光馈入两条光纤中,分别是条纹跟踪光谱仪(FT)的参考通道和科学光谱仪(SC)的科学通道。两个通道之间的差分光程差(dOPD)将使用一种新颖的计量概念进行校正。计量激光器将保持对两个通道的dOPD的控制。它被注入光谱仪并在望远镜水平被检测到。压电驱动的光纤担架会相应地校正dOPD。光纤馈入式集成光学(IO)将所有六个基线的光连贯地组合在一起,并馈入两个光谱仪。在每个单元望远镜(UT)的红外波前传感器(IWS)的协助下,并以高达5 nm的精度校正通道之间的路径差异,GRAVITY将把天文精度的极限推至10μas的数量级,并提供相位-参考分辨率为4 mas的干涉成像。科隆大学开发,建造和测试了相机系统的两个光谱仪。这两款产品均设计用于近红外(1.95-2.45μm),并在低温环境下运行。边缘跟踪器针对通过双棱镜实现的固定光谱分辨率(R = 22)的最高传输进行了优化。科学光谱仪的功能更加多样,可以从三种不同的光谱分辨率(R = [22,500,4000])中进行选择,其中最低分辨率通过棱镜实现,而更高的分辨率通过磨镜实现。每个光谱仪中的沃拉斯顿棱镜都可以对光进行偏振分光。光谱仪的目标是将至少90%的通量集中在Science通道的2×2像素(36×36μm〜2)和Fringe Tracking通道的1像素(24×24μm)中。在第1节中,我们介绍了这两种光谱仪的光谱色散的布置,方向和偏振通道的移动,以及科学光谱仪中光谱的曲率。在第2节中,我们确定探测器的最佳聚焦位置。利用在包含光谱的区域中像素值的标准偏差来计算检测器台不同位置上图像的总体对比度。在第3节中,我们分析了每个光谱仪的高动态范围图像和在先前确定的最佳焦点位置获得的分辨率。我们从高斯拟合的半高宽拟合中垂直推算出平方能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号