首页> 外文会议>Conference on adaptive optics systems >Adaptive Optics for space debris tracking
【24h】

Adaptive Optics for space debris tracking

机译:用于空间碎片跟踪的自适应光学

获取原文

摘要

Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A low latency real time computer system is utilised to control the systems, with a Shack-Hartmann wavefront sensor and deformable mirror running at 1500 frames per second. A laser guide star is used to probe the atmosphere and the tracked debris object is used as a natural guide star for tip-tilt correction.
机译:低地球轨道(LEO)中的空间碎片正日益成为对卫星和航天器的威胁。需要一种可靠且成本有效的方法来检测轨道物体之间可能发生的碰撞,以防止碎片数量呈指数增长。当前用于监视成千上万个空间碎片物体轨道的RADAR测量技术被用来操纵运行中的卫星,以防止可能发生的碰撞。地面激光LIDAR(光检测和测距)是一种补充技术,用于跟踪比RADAR精度更高的小得多的物体,从而可以更好地预测可能发生的碰撞并避免不必要的操纵。自适应光学将在任何基于地面的LIDAR跟踪系统中发挥关键作用,这是利用较小的地面站或功率较小的激光器的经济有效方式。使用高功率和高能激光器进行碎片物体的轨道修改也将需要一个自适应光学系统,以在光子动量传递和激光烧蚀所需的目标上实现高光子强度。 EOS太空系统公司率先开发了针对低地球轨道物体的自动激光空间碎片跟踪技术。澳大利亚国立大学一直在开发自适应光学系统,以改善澳大利亚堪培拉EOS太空系统Mount Stromlo设施的空间碎片跟踪能力。该系统与望远镜集成在一起,并作为NGS AO系统进行调试,然后再进行LGS AO和跟踪操作。通过望远镜传播的脉冲激光用于使用飞行时间数据对目标进行测距。自适应光学器件用于通过校正上行激光束来增加LIDAR系统可用的最大范围和数量或目标。对于自适应光学系统,这样的系统提出了一些独特的挑战:从可变形镜反射的高功率激光器,高摆率跟踪和可变离轴跟踪校正。低延迟实时计算机系统用于控制系统,并具有Shack-Hartmann波前传感器和可变形镜,它们以每秒1500帧的速度运行。激光制导星用于探测大气层,被跟踪的碎片物体用作用于自然倾斜校正的自然导星。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号