首页> 外文期刊>Aerospace science and technology >Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control
【24h】

Spacecraft attitude tracking for space debris removal using adaptive fuzzy sliding mode control

机译:航天器态度跟踪空间碎片使用自适应模糊滑模控制拆卸

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the problem of attitude tracking control for clean platform, with no prior knowledge about the bounds of the parametric uncertainties and external disturbances, in the process of space debris removal is investigated. We proposed a robust adaptive control strategy, which is based on the coupling of the fuzzy logic system (FLS) with sliding mode control (SMC). First, a desired attitude solution model for the space debris removal is developed, and the error attitude dynamics equation of clean platform is formulated. Second, a sliding mode controller is designed due to its appreciable features to the uncertainties and disturbances. On this basis, a FLS is employed to approximate the unknown system functions, and the approximation errors are eliminated using adaptive algorithm. Meanwhile, the control gains of the switching control, being constant in the conventional SMC approach, are adjusted adaptively by fuzzy logic inference techniques in order to reduce the chattering phenomenon. The global stability of the closed-loop system is proven by the Lyapunov stability theorem. Finally, detailed numerical simulations are carried out to verify the robustness and effectiveness of the proposed adaptive fuzzy sliding mode control (AFSMC) approach. The simulation results show that the proposed AFSMC approach can ensure that the spacecraft exactly tracking the desired attitude in presence of inertial uncertainties and external disturbances and effectively reduce the chattering against to the conventional SMC approach. (c) 2020 Elsevier Masson SAS. All rights reserved.
机译:在本文中,研究了清洁平台的态度跟踪控制问题,没有关于参数化不确定性和外部干扰的界限的先验知识,在空间碎片去除过程中。我们提出了一种坚固的自适应控制策略,其基于具有滑模控制(SMC)的模糊逻辑系统(FLS)的耦合。首先,开发了一种所需的空间碎片拆除态度解决方案模型,制定了清洁平台的误差姿态动力学方程。其次,由于其具有不确定性和干扰的可观特征,设计了滑模控制器。在此基础上,使用FLS来近似未知的系统功能,并且使用自适应算法消除近似误差。同时,通过模糊逻辑推理技术自适应地调整开关控制的控制增益,其在传统的SMC方法中,以模糊逻辑推理技术自适应地调整,以减少抖动现象。 Lyapunov稳定性定理证明了闭环系统的全局稳定性。最后,进行了详细的数值模拟,以验证所提出的自适应模糊滑模控制(AFSMC)方法的鲁棒性和有效性。仿真结果表明,该建议的AFSMC方法可以确保航天器在存在惯性不确定性和外部干扰的情况下,并有效地减少对传统SMC方法的抖动。 (c)2020 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号