首页> 外文会议>International astronautical congress >IMPORTANCE RANKING AND CORRECTION OF ERROR FACTORS FOR MULTI-STAGE MANUFACTURING PROCESS OF AEROSPACE ELECTRONIC APPARATUS USING MSA METHODS AND SVM
【24h】

IMPORTANCE RANKING AND CORRECTION OF ERROR FACTORS FOR MULTI-STAGE MANUFACTURING PROCESS OF AEROSPACE ELECTRONIC APPARATUS USING MSA METHODS AND SVM

机译:基于MSA方法和SVM的航天电子设备多阶段制造过程的重要因素及重要因素的校正

获取原文

摘要

The error analysis and correction topics are a difficult issue for the multidisciplinary design and manufacture of complex aerospace electronic apparatus definitely. The handicaps consist not only on their various indecisive physical models, including optical, mechanical or electronical prototypes, but on the complicated mathematical description of multi-stage manufacturing process. To conquer these problems to some extents, an error analysis and correction technique, which utilizes both the Multivariate Statistical Analysis (MSA) methods and the Support Vector Machine (SVM) technique, is proposed in this paper. The MSA methods, including Principal Components Analysis (PCA), k-means and multivariate Monte Carlo simulation, are employed to search and correct the multiple errors; while the SVM is utilized to forecast and classify the quality level of product. The quality level forecast of SVM and the parameter errors tuning of MSA constitute a close-loop computation process of the error correction. The processing steps are: 1) we select typical Quality Control Parameters (QCP) and Quality Level Parameters (QLP) of an aerospace electronic apparatus for error analysis purpose. The QCP can be collected in any manufacturing stages and be any types of quality data, such as the mechanics or the electrics parameters etc. The QLP is an integrated quality evaluation result of product. For example, it can be classified as first-class level or second-class level. 2) We use QCP as the training dataset and QLP as the supervising dataset to train SVM until a steady classification precision is gotten. 3) When a new QCP dataset is inputted, if its forecasted QLP is low we will use Monte Carlo method to generate random data to correct the error of multiple QCP dataset. Both k-means and PCA methods are used to estimate and verdict the distribution space of error dataset. 4) This tuning processing above will be repeated until the classification level of SVM is improved. To test the validity of this method, the quality data of a kind of fiber optic gyro are employed: seventeen quality data, such as the cutting angle, splicing loss and extinction ratio are organized to train the SVM. More than 200 data samples are utilized to estimate the distribution. Experimental results show us that we can achieve at least 3 targets by using this method: 1) forecasting the product quality level; 2) learning the importance rank of error factors; 3) estimating the error correction results of multivariate quality parameters.
机译:对于复杂的航空电子设备的多学科设计和制造,错误分析和纠正问题无疑是一个难题。障碍不仅在于其各种优柔寡断的物理模型,包括光学,机械或电子原型,而且还包括对多阶段制造过程的复杂数学描述。为了在一定程度上解决这些问题,本文提出了一种利用多元统计分析(MSA)方法和支持向量机(SVM)技术进行错误分析和校正的技术。 MSA方法包括主成分分析(PCA),k均值和多元蒙特卡罗模拟,用于搜索和纠正多个错误;而支持向量机用于预测和分类产品的质量水平。 SVM的质量水平预测和MSA的参数误差调整构成了误差校正的闭环计算过程。处理步骤为:1)我们选择航空电子设备的典型质量控制参数(QCP)和质量水平参数(QLP)进行误差分析。 QCP可以在任何制造阶段收集,并且可以是任何类型的质量数据,例如力学或电气参数等。QLP是产品的综合质量评估结果。例如,可以将其分类为一等级别或二等级别。 2)我们使用QCP作为训练数据集,并使用QLP作为监督数据集来训练SVM,直到获得稳定的分类精度为止。 3)当输入一个新的QCP数据集时,如果其预测的QLP低,我们将使用蒙特卡罗方法生成随机数据以校正多个QCP数据集的误差。 k均值和PCA方法都用于估计和判断误差数据集的分布空间。 4)将重复上述调整过程,直到提高SVM的分类级别为止。为了验证该方法的有效性,采用了一种光纤陀螺仪的质量数据:组织了切割角度,拼接损耗和消光比等17个质量数据来训练SVM。利用200多个数据样本来估计分布。实验结果表明,使用这种方法至少可以实现3个目标:1)预测产品质量水平; 2)学习误差因素的重要性等级; 3)估计多元质量参数的纠错结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号