首页> 外文会议>International astronautical congress >THE ACIDOPHILIC IRON-SULFUR BACTERIUM ACIDITHIOBACILLUS FERROOXIDANS AS A MODEL ORGANISM FOR A PUTATIVE MARTIAN ECOSYSTEM
【24h】

THE ACIDOPHILIC IRON-SULFUR BACTERIUM ACIDITHIOBACILLUS FERROOXIDANS AS A MODEL ORGANISM FOR A PUTATIVE MARTIAN ECOSYSTEM

机译:酸性铁硫杆菌酸杆菌铁氧体作为通用生态系统的模型有机体

获取原文

摘要

In the last decades our knowledge about the environmental conditions on Mars, especially about its geochemistry, has increased substantially. Large regions of the Martian surface are covered with sulfate- and ferric oxide-rich deposits. These sediments indicate the possible existence of aqueous, acidic environments on early Mars. Acidophilic iron-sulfur bacteria striving in such habitats on Earth, e.g. Rio Tinto, could have been part of a potential extinct Martian ecosystem or might even exist today in protected subsurface niches. Acidithiobacillus ferrooxidans was chosen as a model organism to study the ability of such bacteria to survive or even grow under Martian conditions. A subsurface environment was assumed as the most likely habitat in these experiments, because it has a higher probability for liquid water, can provide different sources of energy for lithotrophic metabolism, and afford protection from the harsh surface physical conditions. A. ferrooxidans can use many different electron donors and acceptors, so that it can adapt easily to changing environmental conditions. Growth tests were performed on two different Mars regolith simulants without additional nutrients and under different atmospheric compositions (air, N2/C02, H2/C02). The bacteria can grow on both Mars regolith simulants without extra nutrients, by using the Fe(II) dissolved from the minerals (aerobic) or the Fe(III) bound to the minerals by attaching to the particles (anaerobic). A. ferrooxidans able to withstand low temperature (-80C) at least for several weeks without any cryoprotectant. It was found that resistance to desiccation strongly depends on the mode of drying. Biofilms can tolerate longer periods of desiccation than planktonic cells dried without any added protectants, and drying under anaerobic conditions is more favourable to survival than drying in the presence of oxygen. Although A. ferrooxidans was found to be sensitive to UV-C radiation ample shielding is provided already by shallow layers of dust (especially containing Fe3+) or by upper cell layers in a biofilm. Comparing the average ionizing radiation dose on Mars with the tolerance of A. ferrooxidans, a population of these bacteria could remain viable in the shallow subsurface of Mars for long time periods. In sufficient depths, organisms would be protected from surface radiation and could persist even longer, if maintenance metabolism and repair are possible intermittently. Thus, from a geochemical perspective, these chemolithoautotrophic bacteria are relevant candidates for a hypothetical underground Martian food chain based on its metabolic capacities.
机译:在过去的几十年中,我们对火星环境条件的了解,尤其是对地球化学的了解,已大大增加。火星表面的大部分区域覆盖着富含硫酸盐和氧化铁的沉积物。这些沉积物表明火星早期可能存在含水酸性环境。嗜酸性铁硫细菌在地球上的此类栖息地中奋斗力拓(Rio Tinto)可能已经是潜在灭绝的火星生态系统的一部分,或者甚至可能今天存在于受保护的地下壁ni中。选择酸性氧化硫杆菌铁氧体作为模型生物,以研究这种细菌在火星条件下生存甚至生长的能力。在这些实验中,地下环境被认为是最可能的栖息地,因为它具有更高的液态水可能性,可以为岩溶代谢提供不同的能量来源,并提供免受恶劣地面物理条件的保护。氧化铁农杆菌可以使用许多不同的电子供体和受体,因此它可以轻松适应不断变化的环境条件。生长试验是在两种不同的无附加营养物且在不同大气成分(空气,N2 / CO2,H2 / CO2)下的Mars雷哥达模拟物上进行的。通过使用从矿物质中溶解的Fe(II)(好氧)或通过结合到颗粒上的Fe(III)附着在颗粒上(厌氧),细菌可以在两种Mars regolith模拟物上生长而无需额外的营养。在没有任何防冻剂的情况下,至少能够耐受低温(-80C)数周的A.氧化亚铁。已经发现耐干燥性在很大程度上取决于干燥方式。与不添加任何保护剂的情况下干燥的浮游细胞相比,生物膜可以承受更长的干燥时间,并且在无氧条件下干燥比在有氧条件下干燥更有利于存活。尽管发现氧化铁农杆菌对UV-C辐射敏感,但浅层的灰尘(特别是含有Fe3 +)或生物膜中的上部细胞层已经提供了足够的屏蔽。将火星上的平均电离辐射剂量与A.ferrooxidans的耐受性进行比较,这些细菌的群体可能会在火星的浅表层下长期存活。如果能够间歇地维持新陈代谢和修复,则在足够的深度,有机体将受到保护,免受表面辐射的侵害,并且可以持续更长的时间。因此,从地球化学的角度来看,基于其代谢能力,这些化石自养细菌是假设的地下火星食物链的相关候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号