首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Direct Numerical Simulation of Exhaust Gas Recirculation Effect on Autoignition of an HCCI Stratified Turbulent Flow Field for DME/Air mixture at High Pressure: NO effect
【24h】

Direct Numerical Simulation of Exhaust Gas Recirculation Effect on Autoignition of an HCCI Stratified Turbulent Flow Field for DME/Air mixture at High Pressure: NO effect

机译:高压DME /空气混合物中HCCI分层湍流场中废气再循环对自燃的直接数值模拟:没有影响

获取原文

摘要

Direct numerical simulations, for a stratified flow in an HCCI engine-like conditions, are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion (NTC) region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. Three ignition stages are observed. The effect of NO to mimic the EGR effect on autoignition are studied. The results show that adding NO enhances autoignition by the rapid OH radical pool formation (one to two orders of magnitude more OH radicals results in 13%-25% reduction in ignition delay times for 1000 ppm initial NO from EGR) and increases the low temperature ignition heat release rate (Q_(ltc)) with approximately similar ignition heat release rates at the second and third ignition stages. Sensitivity analysis is performed and the important reactions pathways are specified. The DNS results show that the scales introduced by the mixture and thermal stratifications have a strong effect after the low temperature chemistry (LTC) ignition. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but about 19% reduction in the second and third ignition delay times. Stratification, however, reveals lower space averaged LTC ignition heat release rate and higher averaged hot ignition heat release rate compared to homogenous ignitions. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, kinetically driven mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhoeler number using a progress variable conditioned by a proper ignition kernel indicator (IKI). The spontaneous ignition mode is characterized by low scalar dissipation rate, high displacement speed flame front, and high mixing Damkhoeler number. The proposed criteria are applied successfully at the different ignition stages.
机译:针对HCCI发动机状条件下的分层流动进行了直接数值模拟,以研究排气再循环(EGR)和温度/混合物分层对负温度燃烧(NTC)中合成二甲醚(DME)自燃的影响地区。采用了DME /空气混合物的详细化学方法,并通过混合多时标(HMTS)算法对其进行了求解,以降低计算成本。观察到三个点火阶段。研究了NO模仿EGR对自燃的影响。结果表明,添加NO可以通过快速形成OH自由基而增强自燃(OH自由基增加一到两个数量级,导致EGR产生1000 ppm初始NO时,点火延迟时间减少13%-25%)并增加了低温在第二和第三点火阶段具有近似相似的点火放热率的点火放热率(Q_(ltc))。进行敏感性分析并指定重要的反应途径。 DNS结果表明,由混合物和热分层引入的水垢在低温化学(LTC)点火后具有很强的作用。与均匀点火相比,分层点火显示了相似的第一次自燃延迟时间,但第二次和第三次点火延迟时间减少了约19%。然而,分层显示,与均质点火相比,空间平均LTC点火放热率较低,平均热点火放热率较高。结果还表明,分子运输在分层低温点火中起重要作用,并且标量混合时间尺度受局部点火的强烈影响。观察到两种点火核传播模式:波浪状,低速,爆燃模式和自发,高速,动力学驱动模式。引入了三个标准,以使用由适当的点火核心指示器(IKI)调节的进度变量,通过不同的特征时间标度和Damkhoeler数来区分这些模式。自燃模式的特征在于低标量耗散率,高位移速度火焰锋和高混合达姆霍勒数。建议的标准已成功应用于不同的点火阶段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号