首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge
【24h】

Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge

机译:重复脉冲纳秒放电激发的贫燃料-空气混合物中的绝对OH数密度测量

获取原文

摘要

OH Laser Induced Fluorescence (LIF) is used for temperature and absolute OH number density measurements in an atmospheric pressure, near stoichiometric CH_4-air flame generated by a Hencken burner. OH rotational temperature is inferred with excitation scans of both the OH A-X (0,0) and (1,0) bands. OH LIF signal is corrected by considering transition-dependent total radiative decay rate, laser attenuation, and fluorescence trapping. The relative OH concentrations are put on an absolute scale by calibrating the optical collection constant using Rayleigh scattering. The measured absolute OH number density in the flame is compared with laser absorption measurements done at the same locations, showing good agreement and thus demonstrating the efficacy of our calibration approach employing Rayleigh scattering-for a low temperature and pressure, lean, fuel-air mixtures excited by a repetitively pulsed nanosecond (nsec) discharge. Here, a premixed fuel-air flow, initially at T_0=500 K and P=100 torr, is excited by the discharge in a plane-to-plane geometry, operated in burst mode at 10 kHz pulse repetition rate. Burst duration is limited to 50 pulses, to preclude plasma-assisted ignition. The discharge uniformity in air and fuel-air flows is verified using sub-nsec-gated images, employing an intensified charge-coupled device camera. Time-resolved, absolute OH number density, measured after the discharge burst, demonstrates that OH concentration in C_2H_4-air, C_3H_8-air, and CH_4 is highest in the leanest mixtures, while in H_2-air, OH concentration is nearly independent of the equivalence ratio. In C_2H_4-air and C_3H_8-air, unlike in CH_4-air and in H_2-air, transient OH-concentration overshoot after the discharge is detected. In C_2H_4-air and C_3H_8-air, OH decays after the discharge on the time scale of ~0.02-0.1 msec, suggesting little accumulation during the burst of pulses repeated at 10 kHz. In CH_4-air and H_2-air, OH concentration decays within ~0.1-1.0 msec and 0.5-1.0 msec, respectively, showing that it may accumulate during the burst. The experimental results are compared with kinetic modeling calculations using plasma / fuel chemistry model employing several H_2-air and hydrocarbon-air chemistry mechanisms. Kinetic mechanisms for H_2-air, CH_4-air, and C_2H_4-air developed by A. Konnov provide the best overall agreement with OH measurements. In C_3H_8-air, none of the hydrocarbon chemistry mechanisms agrees well with the data. The results show the need for development of an accurate, predictive low-temperature plasma chemistry / fuel chemistry kinetic model applicable to fuels C_3 and higher.
机译:OH激光诱导荧光(LIF)用于在大气压下接近Hencken燃烧器产生的化学计量CH_4空气火焰的温度和绝对OH数密度测量。 OH旋转温度是通过OH A-X(0,0)和(1,0)波段的激发扫描得出的。通过考虑与过渡有关的总辐射衰减率,激光衰减和荧光捕获,可以校正OH LIF信号。通过使用瑞利散射校准光学收集常数,可以将相对OH浓度设置为绝对刻度。将火焰中测得的绝对OH数密度与在相同位置进行的激光吸收率测量进行了比较,显示出很好的一致性,从而证明了我们采用瑞利散射的校准方法的有效性-适用于低温和低压,稀薄的燃料-空气混合物被重复脉冲的纳秒(nsec)放电激发。在此,最初以T_0 = 500 K和P = 100托开始的预混合燃料-空气流被平面到平面几何形状的放电激发,以突发模式以10 kHz脉冲重复频率运行。爆炸持续时间限制为50个脉冲,以防止等离子体辅助点火。空气和燃料-空气流中的排放均匀性使用增强的电荷耦合设备摄像头,通过亚秒级门控图像进行验证。在放电爆发后测量的时间分辨绝对OH数密度表明,在最稀薄的混合物中C_2H_4-空气,C_3H_8-空气和CH_4中的OH浓度最高,而在H_2-空气中,OH浓度几乎与当量比。在C_2H_4-空气和C_3H_8-空气中,与CH_4-空气和H_2-空气不同,在检测到放电后瞬态OH浓度超调。在C_2H_4-air和C_3H_8-air中,放电后OH衰减的时间范围约为0.02-0.1毫秒,这表明在以10 kHz重复的脉冲突发期间几乎没有积累。在CH_4-空气和H_2-空气中,OH浓度分别在〜0.1-1.0毫秒和0.5-1.0毫秒内衰减,这表明它可能在爆发期间积累。将实验结果与采用等离子体/燃料化学模型的动力学建模计算进行了比较,该模型采用了几种H_2-空气和碳氢化合物-空气化学机理。 A. Konnov开发的H_2-空气,CH_4-空气和C_2H_4-空气的动力学机理提供了与OH测量最佳的整体一致性。在C_3H_8-空气中,没有一种碳氢化合物的化学机理与数据吻合得很好。结果表明需要开发适用于燃料C_3和更高燃料的准确,可预测的低温等离子体化学/燃料化学动力学模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号