首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Time-Accurate Flow Simulations Using an Efficient Newton-Krylov-Schur Approach with High-Order Temporal and Spatial Discretization
【24h】

Time-Accurate Flow Simulations Using an Efficient Newton-Krylov-Schur Approach with High-Order Temporal and Spatial Discretization

机译:使用高效的牛顿-克里洛夫-舒尔方法进行高时间和空间离散的时间精确流模拟

获取原文

摘要

In order to demonstrate the potential advantages of high-order spatial and temporal discretizations, implicit large-eddy simulations of the Taylor-Green Vortex flow and transitional flow over an SD7003 wing are computed using a variable-order finite-difference code on multi-block structured meshes. The spatial operators satisfy the summation-by-parts property, with block interface coupling and boundary conditions enforced through simultaneous approximation terms. The solution is integrated in time with explicit-first-stage, singly-diagonally-implicit Runge-Kutta methods. Simulations of the Taylor-Green Vortex show the clear advantage of high-order spatial discretizations in terms of accuracy and efficiency. The higher-order methods are better able to delay excessive dissipation on coarser grids and are better able to capture the details of the flow on finer grids. Similar dissipation and enstrophy profiles are obtained with a second-order spatial discretization, and a fourth-order spatial discretization with half the number of grid points in each direction, half the number of time steps, and approximately 85% less CPU time. Temporal convergence studies demonstrate the relatively high efficiency of the fourth-order explicit-first-stage, singly-diagonally-implicit Runge-Kutta method, except for simulations requiring only a minimum level of accuracy. Results of the simulation of transitional flow over the SD7003 wing show good agreement with experiment and other computations, despite a relatively coarse grid. The use of high-order discretizations is shown to be essential in obtaining this accuracy efficiently. These results give a clear picture of the benefits of high-order discretizations, along with the advantages of the novel parallel Newton-Krylov-Schur algorithm presented, for high-accuracy unsteady flow simulation.
机译:为了证明高阶空间和时间离散化的潜在优势,使用多块系统上的可变阶有限差分码计算了SD7003机翼上的Taylor-Green Vortex流和过渡流的隐式大涡模拟。结构化网格。空间算子满足逐部分求和的属性,并通过同时逼近项强制执行块接口耦合和边界条件。该解决方案与显式第一阶段,单对角隐式Runge-Kutta方法及时集成在一起。 Taylor-Green Vortex的仿真显示出在精度和效率方面高阶空间离散化的明显优势。高阶方法更好地延迟了较粗网格上的过度耗散,并且更好地捕获了较细网格上的流的细节。通过二阶空间离散化和四阶空间离散化可获得类似的耗散和涡旋轮廓,其中每个方向上的网格点数减半,时间步数减半,CPU时间减少约85%。时间收敛研究证明了四阶显式第一阶段,单对角隐式Runge-Kutta方法的效率相对较高,除了只需要最低精度的模拟。尽管网格相对较粗,但SD7003机翼上的过渡流模拟结果与实验和其他计算结果吻合良好。高阶离散化被证明对于有效地获得此精度至关重要。这些结果清楚地显示了高阶离散化的好处,以及提出的新颖的并行Newton-Krylov-Schur算法的优点,用于高精度非恒定流模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号