【24h】

On Clustering Induced Voronoi Diagrams

机译:关于聚类诱导的Voronoi图

获取原文

摘要

In this paper, we study a generalization of the classical Voronoi diagram, called clustering induced Voronoi diagram (CIVD). Different from the traditional model, CIVD takes as its sites the power set U of an input set P of objects. For each subset C of P, CIVD uses an influence function F(C, q) to measure the total (or joint) influence of all objects in C on an arbitrary point q in the space &Roph;d, and determines the influence-based Voronoi cell in &Roph;d for C. This generalized model offers a number of new features e.g., simultaneous clustering and space partition) to Voronoi diagram which are useful in various new applications. We investigate the general conditions for the influence function which ensure the existence of a small-size (e.g., nearly linear) approximate CIVD for a set P of n points in &Roph;d for some fixed d. To construct CIVD, we first present a standalone new technique, called approximate influence (AI) decomposition, for the general CIVD problem. With only Õ(nlog n) time, the AI decomposition partitions the space &Roph;d into a nearly linear number of cells so that all points in each cell receive their approximate maximum influence from the same (possibly unknown) site (i.e., a subset of P). Based on this technique, we develop assignment algorithms to determine a proper site for each cell in the decomposition and form various (1-ε)-approximate CIVDs for some small fixed ε>0. Particularly, we consider two representative CIVD problems, vector CIVD and density-based CIVD, and show that both of them admit fast assignment algorithms; consequently, their (1-ε)-approximate CIVDs can be built in O(n logd+1n) and Õ(n log2 n) time, respectively.
机译:在本文中,我们研究了经典Voronoi图的一般化,称为聚类诱导Voronoi图(CIVD)。与传统模型不同,CIVD将对象输入集P的幂集U作为其站点。对于P的每个子集C,CIVD使用影响函数F(C,q)来测量C中所有对象对空间d中任意点q的总(或联合)影响,并确定基于影响的C中的Voronoi单元。此通用模型为Voronoi图提供了许多新功能,例如同时聚类和空间划分,这在各种新应用中都非常有用。我们研究了影响函数的一般条件,这些条件确保对于固定点d的n个点中的P个点的集合P存在小尺寸(例如近乎线性)的近似CIVD。为了构造CIVD,我们首先针对一般CIVD问题提出了一种独立的新技术,称为近似影响(AI)分解。仅用only(nlog n)次的时间,AI分解就将空间φd划分为几乎线性的单元格,以便每个单元格中的所有点都从相同(可能未知)的位置(即,一个子集)接收其近似的最大影响。 P)。基于此技术,我们开发了分配算法来确定分解中每个单元格的合适位置,并为一些小的固定ε> 0形成各种(1-ε)近似CIVD。特别是,我们考虑了两个代表性的CIVD问题,即向量CIVD和基于密度的CIVD,并表明它们都接受快速分配算法。因此,它们的(1-ε)近似CIVD可以分别在O(n logd + 1n)和Õ(n log2 n)时间建立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号