首页> 外文会议>Annual Device Research Conference >Chemical doping for threshold control and contact resistance reduction in graphene and MoS2 field effect transistors
【24h】

Chemical doping for threshold control and contact resistance reduction in graphene and MoS2 field effect transistors

机译:化学掺杂用于阈值控制和降低石墨烯和MoS2场效应晶体管的接触电阻

获取原文

摘要

Two-dimensional materials such as graphene and MoS2 are promising materials for a wide range of electronic and photonic applications. Graphene has extremely high mobility, tunable optical absorption and strong quantum capacitance making it interesting for high-speed field-effect devices [1], optical modulators [2], and wireless sensors [3]. MoS2 has a 1.6–1.8 eV band gap and reasonable mobility, making it interesting for scaled logic devices [4]. In all transistors, doping is an essential element necessary for controlling the threshold voltage and minimizing extrinsic resistances. However, both graphene and MoS2 suffer from the difficulty of achieving chemical doping. In situ doping of graphene during growth [5] has been demonstrated, but limits the ability to spatially control doping, while electrostatic doping with gate electrodes [6] is unrealistic for practical circuit applications. Therefore, spin-on chemical doping emerges as an attractive method to control doping in 2D materials since it can be controlled spatially and candidate dopants for achieving both n-type and p-type doping [7,8] have been identified. Prior work on spin-on doping for graphene has involved either substrate-gated devices or the extension regions of FETs, but not involved threshold voltage control in practical device geometries [9,10]. To our knowledge, no reports of chemical doping in MoS2 have been reported. In this abstract, we report on two key aspects of chemical doping in 2D transistors. First, we demonstrate spin-on chemical doping using PEI of graphene FETs (gFETs) with local metal back gates and HfO2 gate dielectrics and show that the “natural” p-type doping can be overcome to reproducibly create n-type gFETs that operate in air. We further demonstrate n-type chemical doping of bi-layer MoS2 for the first time and show evidence of reduced contact resistance to buried metal electrodes.
机译:二维材料(例如石墨烯和MoS 2 )是广泛用于电子和光子应用的有前途的材料。石墨烯具有极高的迁移率,可调节的光吸收能力和强大的量子电容,因此对于高速场效应器件[1],光学调制器[2]和无线传感器[3]来说非常有趣。 MoS 2 具有1.6–1.8 eV的带隙和合理的迁移率,这对于规模化逻辑器件来说非常有趣[4]。在所有晶体管中,掺杂是控制阈值电压并使外部电阻最小化所必需的基本元素。但是,石墨烯和MoS 2 都难以实现化学掺杂。已经证明了在生长过程中石墨烯的原位掺杂[5],但是限制了空间控制掺杂的能力,而栅电极的静电掺杂[6]对于实际电路应用来说是不现实的。因此,旋涂化学掺杂作为控制2D材料中的掺杂的一种有吸引力的方法出现了,因为它可以在空间上进行控制,并且已经确定了用于实现n型和p型掺杂的候选掺杂剂[7,8]。先前对石墨烯进行旋涂掺杂的工作涉及衬底门控设备或FET的扩展区域,但不涉及实际设备几何结构中的阈值电压控制[9,10]。据我们所知,尚无关于MoS 2 中化学掺杂的报道。在此摘要中,我们报告了2D晶体管中化学掺杂的两个关键方面。首先,我们演示了使用具有局部金属背栅和HfO 2 栅电介质的石墨烯FET(gFET)的PEI进行旋涂化学掺杂的方法,并表明可以克服“自然” p型掺杂创建可在空气中工作的n型gFET。我们进一步首次证明了双层MoS 2 的n型化学掺杂,并显示出降低了对埋入式金属电极的接触电阻的证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号