首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference exhibit >Theory and Analysis of Liquid-Oxygen-Hydrogen Interface Dynamics in Liquid Rockets at Supercritical Pressures
【24h】

Theory and Analysis of Liquid-Oxygen-Hydrogen Interface Dynamics in Liquid Rockets at Supercritical Pressures

机译:超临界压力下液体火箭中液氧氢界面动力学的理论与分析

获取原文

摘要

Liquid injection in systems such as liquid rockets where the working fluid exceeds the thermo-dynamic critical condition of the liquid phase is not well understood. Under some conditions when operating pressures exceed the liquid phase critical pressure, surface tension forces become diminished when the classical low-pressure gas-liquid interface is replaced by a diffusion-dominated mixing layer. Modern theory, however, still lacks a physically-based model to explain the conditions under which this transition occurs. In this paper, we derive a coupled model to obtain a theoretical analysis that quantifies these conditions for general multicomponent liquid injection processes. Our model applies a modified 32-term Benedict-Webb-Rubin equation of state along with corresponding combining and mixing rules that accounts for the relevant thermodynamic non-ideal multicomponent mixture states in the system. This framework is combined with Linear Gradient Theory, which facilitates the calculation of the vapor-liquid molecular structure. Dependent on oxygen and hydrogen injection temperatures, our model shows interfaces with substantially increased thicknesses in comparison to interfaces resulting from lower injection temperatures. Contrary to conventional wisdom, our analysis reveals that LOX-H2 molecular interfaces break down not necessarily because of vanishing surface tension forces, but because of the combination of broadened interfaces and a reduction in mean free molecular path at high pressures. Then, these interfaces enter the continuum length scale regime where, instead of inter-molecular forces, transport processes dominate. Based on this theory, a regime diagram for LOX-H2 mixtures is introduced that quantifies the conditions under which classical sprays transition to dense-fluid jets.
机译:对于诸如工作流体超过液相的热力学临界条件的液体火箭之类的系统中的液体注入,人们还没有很好的理解。在某些条件下,当工作压力超过液相临界压力时,当传统的低压气液界面被扩散为主的混合层所取代时,表面张力会减小。但是,现代理论仍然缺乏基于物理的模型来解释这种转变发生的条件。在本文中,我们导出了一个耦合模型以获得理论分析,该理论分析对常规多组分液体注入过程的这些条件进行了量化。我们的模型应用了修正的32项Benedict-Webb-Rubin状态方程,以及相应的组合和混合规则,该规则考虑了系统中相关的热力学非理想多组分混合物状态。该框架与线性梯度理论相结合,从而简化了气液分子结构的计算。取决于氧气和氢气的注入温度,我们的模型显示出与较低注入温度导致的界面相比,界面厚度显着增加。与传统观点相反,我们的分析表明,LOX-H2分子界面的破坏不一定是由于表面张力消失,而是由于界面变宽和高压下平均自由分子路径减少的结合。然后,这些界面进入连续长度尺度体系,在该体系中,取代分子间作用力,而占主导地位的是运输过程。基于此理论,引入了LOX-H2混合物的状态图,该图量化了传统喷雾过渡到稠密流体喷射的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号