首页> 外文会议>AIAA fluid dynamics conference and exhibit >Real Gas and Surface Ablation Effects on Hypersonic Boundary Layer Instability over a Blunt Cone
【24h】

Real Gas and Surface Ablation Effects on Hypersonic Boundary Layer Instability over a Blunt Cone

机译:实际气体和表面烧蚀对钝锥上高超声速边界层不稳定性的影响

获取原文

摘要

The objective of this research is to analyze the hypersonic boundary layer transition process where surface ablation is included using direct numerical simulation and linear stability theory. There has been little research into surface ablation effects on hypersonic boundary layer instability and the understanding of real gas effects on hypersonic boundary layer instability still contains uncertainties. In this paper linear stability theory calculations will be performed to analyze hypersonic boundary layer instability with surface ablation effects. A thermochemical nonequilibrium linear stability theory code with a gas phase model that includes multiple carbon species as well as a linearized surface ablation model is developed and validated. As there are strong near wall gradients in ablative flows a high-order method for discretizing the linear stability equations is given which can easily include high-order boundary conditions. The developed linear stability code along with a high-order shock-fitting method for hypersonic flows with thermochemical nonequilibrium and surface chemistry boundary conditions for graphite ablation are used to study hypersonic boundary layer stability for a 7° half angle blunt cone at Mach 15.99. Five separate meanflow simulations were run with the same geometry and freestream conditions to help separate real gas effects, blowing effects, and carbon species effects on hypersonic boundary layer instability. An N factor comparison shows that real gas effects significantly destabilize the flow when compared to an ideal gas. Carbon species resulting from ablation slightly destabilize the flow by increasing the amplification rate of linear disturbances. Blowing is destabilizing for the real gas simulation and has a negligible effect for the ideal gas simulation due to the different locations of instability onset.
机译:本研究的目的是使用直接数值模拟和线性稳定性理论来分析包括表面消融在内的高超声速边界层过渡过程。关于表面烧蚀对高超声速边界层不稳定性的影响的研究很少,而对高超声速边界层不稳定性的真实气体影响的理解仍然不确定。在本文中,将进行线性稳定性理论计算,以分析具有表面烧蚀效应的高超声速边界层的不稳定性。开发并验证了一种热化学非平衡线性稳定性理论代码,该模型具有包含多种碳物质的气相模型以及线性化的表面烧蚀模型。由于在烧蚀流中有很强的近壁梯度,因此给出了离散线性稳定性方程的高阶方法,该方法可以轻松地包含高阶边界条件。所开发的线性稳定性代码以及具有热化学非平衡作用的高超声速流动的高阶激波拟合方法以及用于石墨消融的表面化学边界条件,用于研究马赫数为15.99的7°半角钝锥的高超声速边界层稳定性。在相同的几何形状和自由流条件下进行了五次单独的均流模拟,以帮助分离对高超声速边界层失稳的实际气体影响,吹气影响和碳物质影响。 N因子比较显示,与理想气体相比,实际气体效应会严重破坏流量的稳定性。烧蚀产生的碳物质会通过增加线性扰动的放大率而使流量稍微不稳定。吹气对于真实的气体模拟来说是不稳定的,并且由于不稳定位置的不同位置,对于理想的气体模拟来说,其影响可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号