首页> 外文会议>International conference on digital printing technologies >Selecting Digital Deposition Methods to Meet 2D and 3D Application Requirements
【24h】

Selecting Digital Deposition Methods to Meet 2D and 3D Application Requirements

机译:选择数字沉积方法以满足2D和3D应用要求

获取原文

摘要

The paper outlines methods for effectively selecting digital deposition technologies for 2D printing and 3D deposition when there are dozens of technologies from which to choose. We present a matrix of parameters for comparing and evaluating the cost-effectiveness, performance capabilities and characteristics of currently available digital print and deposition technologies against the performance requirements of applications. The paper specifically cites 2D and 3D applications including folding carton production and plastic parts manufacturing requirements. The matrix structure provides researchers and technology developers with a flexible tool for fine-tuning the print and deposition technology selection process. This paper also examines how developers can use the matrix for integrating digital deposition technology into complex manufacturing assembly processes. Due to the space limitations that this publication affords, we provide the matrix in outline form with a few examples. Our research group has compiled a comprehensive matrix. The digitally controlled deposition methods covered in this presentation include: the various forms of Inkjet, Inkjet-like methods, Inkjet Liquid Binding Powder (IJLBP), syringe deposit / Robo-casting (RC), aerosol deposit, pump dispensing, Electron Beam Freeform Fabrication (EB3F), Shape Deposition Manufacturing (SDM), and Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF). We have focused for this presentation on methods where a digitally controlled process deposits material on a substrate or aparticulate build material. In this report we do not cover spread-coating methods using radiation curing, such as laser electro-photography, stereo-lithography (SLA), selective laser sintering (SLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), and Solid Ground Curing (SGC). Nor do we cover laminating build methods, such as Laminated Object Manufacturing (LOM). Our group covers these other technologies in an upcoming report. The matrix structures of all these reports will facilitate comparison of print, deposition and build methods against application requirements. We focus on the characteristics of the deposition methods that address application requirements. These encompass both the way the deposition method performs and what it can deposit. Performance factors include the rate at which it can deposit amounts of specific materials, the accuracy and consistency of deposition placement, deposition resolution, the pH and deposit material device tolerances, material viscosity ranges necessary for deposition, system temperature controls and tolerances, operating, deposition material velocity, grey-scale capabilities, and device performance life. Users would also need capital and operation costs in selecting deposition systems. Operating costs will, however, vary greatly depending upon particular use. We therefore have not included operating costs in the current presentation matrix. Deposited material characteristics include viscosity, surface tension, and method to dry, solidify, polymerize, cure or fix. Performance requirements for deposited films and builds include abrasion and chemical resistance, tensile strength, and market acceptance of output appearance.The report considers requirements for the following 2D applications: 1. Marking and coding 2. Graphics printing 3. Textiles 4. Labelprinting 5. Packaging 6. Ceramics 7. Glass 8. Printed circuits 9. Adhesives 10. Masking for etching resist 11. It also considers requirement for the following 3D applications: 1. Prototype models 2. Casting models 3. Architectural models 4. Dental models 5. Jewelry lost wax models 6. Metal and polymeric parts replacements 7. Photovoltaic deposition, masking, building 8. Electronics connectors 9. Buildings The requirements for these various applications can differ significantly. Deposition methods may be suited to meet the requirements of some applications while not being able to satisfy the requirements of others. Deposited material performance proves essential for meeting application requirements. The matrix structure helps to identify the digitally controlled deposition methods that satisfy the requirements of listed applications.
机译:本文概述了在有数十种技术可供选择的情况下有效选择用于2D打印和3D沉积的数字沉积技术的方法。我们提供了一个参数矩阵,用于根据应用程序的性能要求比较和评估当前可用的数字打印和沉积技术的成本效益,性能和特性。本文特别引用了2D和3D应用程序,包括折叠纸箱生产和塑料零件制造要求。矩阵结构为研究人员和技术开发人员提供了灵活的工具,用于微调打印和沉积技术的选择过程。本文还研究了开发人员如何使用矩阵将数字沉积技术集成到复杂的制造装配过程中。由于该出版物所提供的空间限制,我们以轮廓形式提供了矩阵,并提供了一些示例。我们的研究小组已编制了一个综合矩阵。本演示文稿介绍的数字控制沉积方法包括:各种形式的喷墨,类似喷墨的方法,喷墨液体粘合粉末(IJLBP),注射器沉积/机器人铸造(RC),气溶胶沉积,泵分配,电子束自由成型制造(EB3F),形状沉积制造(SDM)和熔融沉积建模(FDM)/熔融长丝加工(FFF)。在本演示中,我们将重点放在数字控制工艺将材料沉积在基板上或形成细小颗粒的方法上。在本报告中,我们不涵盖使用辐射固化的扩涂方法,例如激光电子照相,立体光刻(SLA),选择性激光烧结(SLS),选择性激光熔融(SLM),电子束熔融(EBM),和固体地面固化(SGC)。我们也没有介绍层压构建方法,例如层压对象制造(LOM)。我们的小组将在即将到来的报告中介绍这些其他技术。所有这些报告的矩阵结构将有助于比较打印,沉积和构建方法与应用程序需求。我们专注于满足应用需求的沉积方法的特性。这些内容既包括沉积方法的执行方式,也包括沉积方法。性能因素包括其可以沉积特定材料的速率,沉积位置的准确性和一致性,沉积分辨率,pH和沉积材料设备的公差,沉积所需的材料粘度范围,系统温度控制和公差,操作,沉积材料速度,灰度功能和设备性能寿命。用户在选择沉积系统时还需要资金和运营成本。但是,运营成本将根据特定用途而有很大差异。因此,我们没有在当前的展示矩阵中包括运营成本。沉积的材料特性包括粘度,表面张力以及干燥,固化,聚合,固化或固定的方法。沉积膜和涂料的性能要求包括耐磨性和耐化学性,拉伸强度以及产品外观的市场接受度。该报告考虑了以下2D应用程序的要求:1.标记和编码2.图形印刷3.纺织品4.标签印刷5。包装6.陶瓷7.玻璃8.印刷电路9.胶粘剂10.抗蚀剂掩膜11.它还考虑了以下3D应用程序的要求:1.原型模型2.铸造模型3.建筑模型4.牙科模型5。珠宝失蜡模型6.金属和聚合物零件的更换7.光伏沉积,遮罩,建筑物8.电子连接器9.建筑物这些不同应用的要求可能有很大差异。沉积方法可能适合于满足某些应用程序的要求,而不能满足其他应用程序的要求。沉积的材料性能证明对于满足应用要求至关重要。矩阵结构有助于确定满足所列应用要求的数控沉积方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号