首页> 外文会议>IEEE/AIAA Digital Avionics Systems Conference >Realizing the Promise of Artificial Intelligence for Unmanned Aircraft Systems through Behavior Bounded Assurance
【24h】

Realizing the Promise of Artificial Intelligence for Unmanned Aircraft Systems through Behavior Bounded Assurance

机译:通过行为有限保证实现无人机系统的人工智能人工智能的承诺

获取原文

摘要

A key value proposition for incorporation of Artificial Intelligence (AI) and Machine Learning (ML) methods into aviation is that they offer means of understanding data in ways that allow hitherto unprecedented insights for decision making, whether by a human or a machine. When these techniques are applied to cyber-physical systems, such as unmanned aircraft systems (UAS), they can result in positive societal impacts (e.g., search and rescue). However, the advantages of such techniques must be balanced against appropriate safety and security requirements so that taken together the system can ensure an acceptable level of confidence and assurance in both civilian and military applications. To this end, there is a need for the capability to suitably characterize such techniques and assess how they can be integrated into a viable assurance framework that can maximize safety and security benefits while bounding the inherent risk of non-determinism arising from such these approaches. This paper focuses on assurance and behavior bounds for decision making systems from a) algorithmic functional performance; b) schedulability analysis and candidate scheduling paradigms; and c) processor architectures (including multi-core) to support minimized interference in general. We will place particular emphasis on machine learning approaches for control, navigation and guidance applications for unmanned systems. This paper will review available and emerging approaches (e.g., formal methods, modeling and simulation, real-time monitors/agents among others) to ensuring behavior assurance for unmanned systems engaged in missions of moderate-to-high complexity. The intent is to examine behavior assurance for advanced autonomous operations within a holistic life-cycle process
机译:将人工智能(AI)和机器学习(ML)方法纳入航空的关键值主张是,他们提供了以允许迄今为止对决策的前所未有的洞察的方式理解数据的方法,无论是由人还是机器。当这些技术应用于网络物理系统(例如无人机系统(UAS))时,它们可能导致正面的社会影响(例如,搜索和救援)。然而,这种技术的优势必须抵御适当的安全性和安全要求,以便在一起,系统可以确保民用和军事应用中可接受的信心和保证。为此,需要能够适当地描述这些技术,并评估它们如何集成到可行的保证框架中,可以最大限度地提高安全性和安全效益,同时限制来自这些方法产生的非确定性的固有风险。本文侧重于来自A算法功能性能的决策系统的保证和行为界限; b)调度分析和候选调度范式; c)处理器架构(包括多核),以支持一般的最小化干扰。我们将特别强调无人机系统的控制,导航和指导应用程序的机器学习方法。本文将审查可用和新兴的方法(例如,正式的方法,建模和模拟,实时监测/代理商等),以确保无人驾驶系统从事中等至高复杂性任务的无人系统的行为保证。意图是检查整体生命周期过程中高级自治操作的行为保证

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号