首页> 外文会议>IEEE/AIAA Digital Avionics Systems Conference >SIMPLIFIED ROBOTICS AVIONICS SYSTEM: A INTEGRATED MODULAR ARCHITECTURE APPLIED ACROSS A GROUP OF ROBOTIC ELEMENTS
【24h】

SIMPLIFIED ROBOTICS AVIONICS SYSTEM: A INTEGRATED MODULAR ARCHITECTURE APPLIED ACROSS A GROUP OF ROBOTIC ELEMENTS

机译:简化机器人航空电子系统:应用于一组机器人元素的集成模块化架构

获取原文

摘要

The latest NASA initiative for Human Space, namely the Space Exploration Vision, which encompasses Project Constellation, provides new opportunities for system implementation. The second wave of development after Crew Exploration Vehicle and Crew Launch Vehicle development, and following Shuttle retirement, will be development of lunar base concepts and operations leading to early robotic missions. The current vision for lunar base implementation anticipates that there will be highly integrated robotic pre-constraction operations and robotic assistants for the astronauts. In preparation for this robotics involvement, there will be a series of robotic precursor missions to the Moon and Mars. Historically, many humans are required to control a single robot; in practice the Mars Exploration Rovers require a staff of approximately 70 to support continual operation of a single robotic rover. In addition robotic avionics has typically been customized for each robot. While this has been effective for prior robotic missions, the habitation and exploration of the Moon and Mars will require many robots working in tandem with humans. The limited NASA budget to implement the Space Exploration Vision will require that multiple robots be commanded by a minimal operations staff and that a common set of avionics electronics be used across the multitude of robots needed. Traditional robotic avionics do not address either the additional autonomy or commonality required by this new set of robotic missions. One solution to address these concepts is to apply a Honeywell patent pending architecture that uses an Integrated Modular Avionics (IMA) approach across a multiplicity of robots. This concept treats a group of robotic elements as a single system. Instead of each robot having a separate avionics system, a single shared avionics system will be deployed across the robots. This sharing would be implemented using an IMA system approach with each element of the robotic system being connected using a Virtual Backplane. The IMA approach is a next generation avionics architecture where each element knows when an internal failure occurs and removes itself from the system. EMA utilizes a fail passive design that communicates to a COTS backplane for input/output and to the aforementioned Virtual Backplane for intra-system communication. Each robot implements either single or multiple hardware-enhanced ARINC-653 software partitions. Together these partitions form a single system that provides the simplicity of a simplex system; implements the highest levels of reliability; provides the flexibility to easily reconfigure both software applications and hardware interfaces; allows for rapid prototyping using low-cost COTS hardware; and is easily expandable beyond the initial point implementation. The avionics for each robot interfaces to the loacl sensors and effectors. The high-level control of the robot may be local or may reside on another robot, a group of robots, or a remote base station. From a system standpoint, control of multiple robots is viewed as a single system with multiple components as opposed to multiple individual systems interacting together. The system level control could include redundant elements spread across multiple robots depending on the level of fault tolerance and reliability that is required. The robotic system could also be dynamically reconfigured when multiple elements (robot assistants, robotic vehicles) join or leave the system, adjusting to changing mission needs. The application of IMA principles to robotics applications provides an infrastructure that has been demonstrated to reduce cost, schedule, and risk throughout the life of the program. In addition, this infrastructure provides the means for applying new approaches to solving problems such as multi-robot collaboration.
机译:最新的人类空间倡议,即包括项目星座的空间探索视野,为系统实施提供了新的机会。第二次发展船员勘探车和船员发动车辆发展,并在班车退休后,将发展月球基地概念和运营,导致早期机器人任务。目前农历基础实施的愿景预计将有高度综合的机器人预压缩运作和宇航员的机器人助理。在准备这个机器人的参与中,将有一系列机器人前体特派团到月球和火星。从历史上看,许多人都需要控制单个机器人;在实践中,火星探索群需要一名约70的员工来支持单一机器人流动站的持续运作。此外,机器人航空电子设备通常为每个机器人定制。虽然这对先前的机器人任务有效,但月球和火星的居住和探索将需要许多与人类合作的机器人。实施空间勘探愿景的有限NASA预算将要求通过最小的运营人员命令多个机器人,并且在需要的多个机器人中使用一套常见的航空电子设备。传统的机器人航空电子器件不会解决这套新的机器人任务所需的额外自主权或共度。解决这些概念的一个解决方案是应用霍尼韦尔专利待处理架构,该待遇架构使用跨越多个机器人的集成模块化航空电子设备(IMA)方法。这一概念将一组机器人元素视为一个系统。而不是每个具有单独航空电子系统的机器人,单个共享航空电子系统将在机器人身上部署。将使用IMA系统方法实现此共享,其中使用虚拟背板连接的机器人系统的每个元素。 IMA方法是下一代航空电子版架构,其中每个元素知道内部发生故障并从系统中移除自身。 EMA利用失败被动设计,该设计与COTS背板通信,用于输入/输出以及用于系统内通信的上述虚拟背板。每个机器人都实现了单个或多个硬件增强的ARINC-653软件分区。这些分区在一起形成一个单一的系统,提供单纯x系统的简单性;实现最高级别的可靠性;提供了轻松重新配置软件应用程序和硬件接口的灵活性;允许使用低成本COTS硬件快速原型设计;并且可以在初始点实现之外轻松扩展。每个机器人接口到LOACL传感器和效果的航空电子设备。机器人的高级控制可以是局部的,也可以驻留在另一个机器人上,一组机器人或远程基站。从系统的角度来看,多个机器人的控制被视为具有多个组件的单个系统,而不是与多个单独的系统相互作用。系统级控制可以包括冗余元素,这取决于多个机器人的级别,具体取决于所需的容错和可靠性。当多个元素(机器人助手,机器人车辆)加入或离开系统时,还可以动态重新配置机器人系统,调整改变任务需求。 IMA原则在机器人应用程序中的应用提供了一种基础设施,这些基础设施已被证明以降低整个计划的寿命。此外,该基础架构提供了应用新方法来解决多机器人协作等问题的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号