首页> 外文会议>International Vacuum Nanoelectronics Conference >Adsorbate Effects on Charge Distribution of Carbon Nanotube Simulated by a Multi-scale Method
【24h】

Adsorbate Effects on Charge Distribution of Carbon Nanotube Simulated by a Multi-scale Method

机译:多尺度法模拟碳纳米管电荷分布的吸附效应

获取原文

摘要

The apex structure of CNT has impact influence to the FE process. It has been observed that the hydrogenation of the tube wall transforms a metallic CNT to a semiconducting one [1], that O{sub}2 exposure increases the turn-on field of SWCNTs and decreases the FE efficiency [2] and that the adsorption of H{sub}2O enhances the field emission current. However, experimental observations so far have not been conclusive [3-5]. To understand the dependence of FE upon the atomic structures of apexes of CNTs, careful simulations via the density functional method (DFT) have been done. There are contradictory conclusions about the effect of adsorbates. Zhou et al [6] and Kim et al [7] obtained the local density of states (LDOS) at the apex by ab initio methods; they found that the LDOS at the charge-neutrality level was suppressed by the hydrogen. They therefore concluded that hydrogen adsorption reduces FE current density. By contrast, Mayer et al. calculated the AVB using a dipole and point charge model [8]; they assumed that the apex-vacuum barrier was reduced by the presence of the hydrogen, and concluded that hydrogen adsorption enhances the FE current density. More careful studies on this topic would obviously be useful. Only recently, it is possible to tackle the realistic size of single-walled carbon nanotubes (SWCNTs) in field electron emission (FE) conditions by a multi-scale method involving quantum mechanics and molecular mechanics [9,10]. We adopted this method to simulate the FE from open-ended SWCNTs of realistic length (1μm) with atomic decorations. The purpose of this study is to optimize the apex structure of the SWCNT to achieve higher FE efficiency. Obviously the apex-vacuum barrier (AVB) and thereby the FE characteristic will be strongly affected by the electron transfer between carbons and adsorbates and among the adsorbate atoms. The atomic decoration and geometric symmetry breaking in the apex will lead to formation of dipoles and/or quadrupoles (referred to as spontaneous multipoles). If the dipole has its positive end outward to the vacuum (positive dipole), it tends to suppress the AVB; otherwise (negative dipole), it tends to raise the barrier. This simple argument suggests that the carbon dangling bonds in the opened end of the SWCNT should be saturated by atoms of lower electronegativity (denoted by X{sub}s) in contrast with carbons. The electron supply is another important component for FE current. For a given AVB, the emission current is proportional to the incident electron flux in the Fermi level. Could one suppress the AVB and have higher electron density in the apex in the same time? The simulation here suggested that a spontaneous quadrupole introduced by atomic decoration in the free end of the SWCNT would be helpful for this purpose.
机译:CNT的顶点结构对Fe过程产生影响。已经观察到管壁的氢化将金属CNT转化为半导体一个[1],即o {sub} 2曝光增加了SWCNT的开启场,并降低了FE效率[2]并吸附了吸附H {sub} 2o增强了场发射电流。然而,到目前为止,实验观察尚未得出结论[3-5]。为了了解Fe在CNT的顶点的原子结构上,已经完成了通过密度函数方法(DFT)的仔细模拟。关于吸附物的影响存在矛盾的结论。周等[6]和Kim等[7]通过AB Initio方法获得了APEX的状态(LDO)的局部密度;他们发现,氢气抑制了电荷中性水平的LDO。因此,它们得出结论,氢吸附降低了Fe电流密度。相比之下,Mayer等人。使用偶极和点电荷模型计算AVB [8];他们认为,通过氢的存在降低了顶点真空屏障,并得出结论,氢吸附增强了Fe电流密度。对这一主题的研究更加仔细研究显然是有用的。最近,可以通过涉及量子力学和分子机械的多尺度方法来应对现场电子发射(Fe)条件中的单壁碳纳米管(Fe)条件的逼真大小[9,10]。我们采用了这种方法,从现实长度(1μm)的开放式SWCNS的方法用原子装饰模拟。本研究的目的是优化SWCNT的顶点结构,以实现更高的FE效率。显然,顶点 - 真空屏障(AVB),从而将Fe特性受碳和吸附剂之间的电子转移和吸附原子之间的强烈影响。 APEX中的原子装饰和几何对称性打破将导致偶极子和/或四轮节(称为自发性多极)。如果偶极子向真空(正偶极子)向外终点,则倾向于抑制AVB;否则(负偶极子),它往往会提高屏障。这个简单的论点表明,SWCNT的开口端中的碳悬空键应通过较低电气的原子(由X {um}表示)与碳的原子饱和。电子供电是Fe电流的另一个重要组成部分。对于给定的AVB,发射电流与FERMI水平中的入射电子通量成比例。可以抑制AVB并在顶点中具有更高的电子密度同时?这里的模拟表明,SWCNT自由端在SWCNT的自由端引入的自发四极杆对此对于此目的是有帮助的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号