首页> 外文会议>Chinese Control and Decision Conference >Simulation Analysis of Time-frequency based on Waveform Detection Technique for Power Quality Application
【24h】

Simulation Analysis of Time-frequency based on Waveform Detection Technique for Power Quality Application

机译:基于波形检测技术的功率质量应用时频仿真分析

获取原文
获取外文期刊封面目录资料

摘要

The automatic detection and classification of power quality disturbances has become a significant issue in modern power industry, because of electric load sensitive to power transient signal. This paper presents a novel approach for detection and location of power quality disturbances based on wavelet transform and artificial neural network. The wavelet transform is the projection of a discrete signal into two spaces: the approximation space and a series of detail spaces. The implementation of the projection operation is done by discrete-time subband decomposition of input signals using filtering followed by downsampling. The wavelet transform is utilized to produce representative feature vectors that can accurately capture the characteristics of power quality disturbance, exploring feature extraction of disturbance signal to obtain dynamic parameters. The feature vector obtained from wavelet decomposition coefficients are utilized as input variables of neural network for pattern classification of power quality disturbances. The training algorithm shows great potential for automatic power quality monitoring technique with on-line detection and classification capabilities. The combination performance of wavelet transform with neural network is evaluated by simulation results, approving that the proposed method is effective for analysis of power quality signal.
机译:由于电源瞬态信号敏感,电力质量障碍的自动检测和分类已成为现代电力行业的重要问题。本文提出了一种基于小波变换和人工神经网络的电能质量障碍检测和位置的新方法。小波变换是将离散信号投影到两个空间:近似空间和一系列细节空间。投影操作的实现是通过使用滤波的输入信号的离散时间子带分解来完成,然后进行下采样。小波变换用于生产能够精确地捕获电能质量扰动特性的代表特征向量,探索干扰信号的特征提取以获得动态参数。从小波分解系数获得的特征向量被用作神经网络的输入变量,用于功率质量扰动的模式分类。培训算法对具有在线检测和分类功能的自动电能质量监控技术显示出很大的潜力。通过模拟结果评估与神经网络的小波变换的组合性能,批准所提出的方法对于分析电能质量信号是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号