首页> 外文会议>International technical meeting of the Satellite Division of the Institute of Navigation >Determination of GPS Tropospheric Delays by Utilizing Ground-based GPS Network Measurements and its Applications for Weather Forecasts and Precise Point Positioning
【24h】

Determination of GPS Tropospheric Delays by Utilizing Ground-based GPS Network Measurements and its Applications for Weather Forecasts and Precise Point Positioning

机译:利用地面GPS网络测量确定GPS对流层延迟及其在天气预报和精确点定位中的应用

获取原文

摘要

The delay occurs while GPS signals pass through theionosphere and troposphere and it decreases the accuracyof GPS positioning. Therefore, it must be eliminated forGPS precise point positioning (PPP). Through studies ontropospheric delay measurements of the GPS signal, it isnow possible to apply the technology of GPS networkmeasurements to weather forecasts. Recently, the KoreaMeteorological Administration (KMA) has introducedGPS precipitable water vapor (PWV) to numericalweather predictions. KMA have been using upper-airobservation systems to observe atmospheric water vapor,such as radiosonde and radiometer. However, theseobservation networks weren't dense enough to analyze therapid change in under-synoptic scale atmosphere. Thenetwork of GPS is dense enough in Korea, and it can bean alternative of upper air observation method.To calculate GPS PWV, we need air pressure andtemperature measurements at GPS station. About 100GPS permanent stations are being operated in Korea.However, only 10 GPS permanent stations have their ownweather sensors connected to the GPS receiver. Toovercome this limitation, interpolation of pressures andtemperatures from nearby automatic weather station(AWS) is needed for the GPS station without ameteorological sensor. In this study, we comparedKriging and reverse sea level correction (RSLC) to verifywhich the suitable AWS interpolation method is.Eventually, RSLC showed more accurate result. The rootmean square error (RMSE) of RSLC was 0.2 hPa and1.2°C , on the other hand , the RMSEs of Kriging were 1.3hPa and 1.8 °C. We calculated GPS PWV by usingGIPSY 5.0 and evaluated the PWV accuracy bycomparing with PWVs from radiosonde and radiometer.The RMSE of GPS PWV was about 3 mm as comparedwith radiosonde or radiometer. We calculated GPS PWVsduring severe weather periods and analyzed thecharacteristics of atmospheric water vapor changes.We suggested a new tropospheric delay correctionmodel based on zenith total delay (ZTD) from GIPSYprocessing result. The model provides tropospheric delaycorrection to GPS users into grid map structure. To makethe tropospheric delay grid map, we calculated ZTDs ofeach GPS site in Korean Peninsula. Then, we interpolatedthe ZTDs by using inverse distance weighting (IDW)algorithm to calculate the values of grid points. Thetropospheric delay correction model consists of zenithhydrostatic delay (ZHD), zenith wet delay (ZWD) andZTD. As the result of tropospheric delay model accuracyanalysis, the RMSE between grid map data and GPS sitedata was 0.7 mm in ZHD, 7.6 mm in ZWD and 8.5 mm inZTD. Finally, we applied the model to single frequencyrelative positioning algorithm and analyzed thepositioning accuracy enhancement. As the result,positioning accuracy was improved up to 36% in case ofrelative positioning of Suwon (SUWN) and Mokpo(MKPO), that the baseline distance was about 297km.
机译:GPS信号通过 电离层和对流层,降低了精度 GPS定位。因此,必须将其消除 GPS精确点定位(PPP)。通过研究 GPS信号的对流层延迟测量,它是 现在可以应用GPS网络技术 测量天气预报。最近,韩国 气象局(KMA)已推出 GPS可沉淀水蒸气(PWV)到数值 天气预报。 KMA一直在使用高空 观测系统以观测大气中的水蒸气, 例如探空仪和辐射计。但是,这些 观测网络不够密集,无法分析 天气概要尺度下大气的快速变化。这 GPS网络在韩国足够密集,而且可以 高空观测方法的替代方法。 要计算GPS PWV,我们需要气压和 GPS站的温度测量。约100 GPS永久站正在韩国运营。 但是,只有10个GPS常设站有自己的 气象传感器连接到GPS接收器。到 克服此限制,内插压力和 附近自动气象站的温度 不带GPS的GPS站需要(AWS) 气象传感器。在这项研究中,我们比较了 克里格(Kriging)和反向海平面校正(RSLC)进行验证 合适的AWS插值方法是哪种。 最终,RSLC显示出更准确的结果。根 RSLC的均方误差(RMSE)为0.2 hPa, 另一方面,在1.2°C时,克里金的均方根误差为1.3 hPa和1.8°C。我们通过使用 GIPSY 5.0并通过以下方式评估了PWV精度 与无线电探空仪和辐射计的PWV进行比较。 GPS PWV的RMSE约为3毫米 用探空仪或辐射计。我们计算了GPS PWV 在恶劣的天气期间,并分析了 大气水蒸气变化的特征。 我们提出了一种新的对流层延迟校正 GIPSY的基于天顶总延迟(ZTD)的模型 处理结果。该模型提供了对流层延迟 将GPS用户校正为网格地图结构。使 对流层延迟网格图,我们计算了 朝鲜半岛的每个GPS站点。然后,我们插值 使用反距离权重(IDW)的ZTD 算法来计算网格点的值。这 对流层延迟校正模型由天顶组成 静水延迟(ZHD),天顶湿延迟(ZWD)和 ZTD。由于对流层延迟模型的准确性 分析,网格地图数据和GPS站点之间的RMSE ZHD的数据为0.7毫米,ZWD的数据为7.6毫米,ZHD的为8.5毫米 ZTD。最后,我们将该模型应用于单频 相对定位算法并分析 定位精度提高。作为结果, 在以下情况下,定位精度最高可提高36%: 水原和木浦的相对位置 (MKPO),基准距离约为297公里。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号