首页> 外文会议>International technical meeting of the Satellite Division of the Institute of Navigation >Research on the Epoch Folding Phase Estimation X-ray Pulsars Relative Navigation based Spatial States Determination of Formation Flying Spacecrafts
【24h】

Research on the Epoch Folding Phase Estimation X-ray Pulsars Relative Navigation based Spatial States Determination of Formation Flying Spacecrafts

机译:基于时空折叠相位估计的X射线脉冲星相对导航基于编队飞行器空间状态确定的研究

获取原文

摘要

Autonomous relative navigation is one of the keytechnologies for the accompanying satellite, the space RVD(Rendezvous and Docking) mission, the capture andmaintenance of the on orbit satellites, and deep spaceexplore. Autonomous operations reduce the dependence ofspace missions to human interaction and communication with Earth, if not make it totally independent, especially fora cluster of multiple spacecraft. Formation flight of multiplespacecraft in deep space is another area that has attracted agreat deal of interest in recent years. To accomplish theformation, accurate estimation of relative position betweenthe space vehicles is necessary. Spacecrafts operating onclose-to-Earth orbits can obtain a complete autonomousnavigation solution through the current Global NavigationSatellite System (GNSS) (B. W. Parkinson and J. J. Spiker,Jr., 1996). But, for deep space missions or situations whereGNSS is not available, an alternative navigation approach isneeded. Employing Earth-based navigation systems, such asthe Deep Space Network (DSN), is a possibility. However,such systems suffer from low performance in situationswhere long range navigation is required. Furthermore, theyare highly based on communicating with Earth to analyzetheir data. Because of these problems, the need for higheraccuracy, and also continuingly increasing cost ofspacecrafts operations, spacecraft navigation is evolvingfrom Earth-based solutions towards more autonomousmethods (D. Folta, C. Gramling, A. Long, D. Leung, andS. Belur, 1999 and R. Gounley, R. White, and E. Gai,1984). An autonomous navigation system internallycomputes its own navigation and guidance information byusing onboard sensors. A possibility is to use the signalsemitted from X-ray celestial sources. One of the mostreliable X-ray sources is pulsars. Relative navigation ofspacecrafts may be accomplished by observing X-raysources and indirectly determining the spacecrafts' relativeposition.For X-ray pulsars navigation, which has been employed andstudied in both contexts of absolute navigation (Sheikh, S. I.,et al. 2006, Sheikh, S. I. and Pines, D. J. 2006, and Sala,J., et al, 2004), and relative navigation (Sheikh, S. I.,Golshan, A. R., and Pines, D. J. 2007, Emadzadeh, A. A.,Speyer, J. L., and Hadaegh, F. Y. 2007, Emadzadeh, A.A., Speyer, J. L., and Golshan, A. R. 2009, andEmadzadeh, A. A., Golshan, A. R., and Speyer, J. L2009), is shown that a key task is estimation of the pulsephase (Emadzadeh, A. A., Speyer, J. L., and Golshan, A.R. 2009, Emadzadeh, A. A., Golshan, A. R., and Speyer,J. L 2009, Golshan, A. R. and Sheikh, S. I. 2007, Hanson,J., et al. 2008, and Emadzadeh, A. A. and Speyer, J. L.2010). In (Hanson, J., et al. 2008) utilizing the epochfolding procedure is proposed for estimation of the pulsephase, and the proposed estimator is analyzed assuming thatthe procedure noise is Gaussian. In (madzadeh, A. A. andSpeyer, J. L. 2010) the epoch folding procedure ismathematically formulated, and it is shown how it results inretrieving the pulsar intensity. The procedure noise isanalyzed, and its statistical properties such as its mean,variance, and autocorrelation function are presented. In thiswork, the pulse delay estimation problem is introduced, andit is explained how employing epoch folding, the relativeposition between two space vehicles, can be estimated.Based on epoch folding, two different pulse delay estimatorsare proposed, and their performance is compared against theCramér-Rao lower bound (CRLB). It is also investigatedhow imprecise absolute velocity data can affect the positionestimation accuracy.Then based on above research, the algorithm of relativenavigation for formation flying spacecrafts using X-raypulsars was investigated. And a novel relative navigationalgorithm fo r multiple-satellite formation using X-raypulsars measurements is proposed. The problem of relativenavigation between formation flights utilizing X-ray pulsarsmeasurements is investigated. The time difference of signalarrival (TDOA) is estimated by signal's cross-correlatedprocessing, which is further used as measurement to achievethe relative navigation. A Constrained Adaptive KalmanFilter is employed to estimate the relative positions andvelocities between the formation flights. Numericalsimulations are performed to assess the proposed navigationalgorithm. Furthermore, errors of the navigation areanalyzed in order to improve the accuracy of this method.So in a word, this paper presents a method of determining arelative navigation solution between two formation flightsby using celestial X-ray pulsar sources. The rest of the paperis organized as follows. In Section II, the principle of therelative navigation based on X-ray pulsar is described, andmathematical models describing the X-ray pulsar signals aredeveloped. Furthermore, the epoch folding procedure ispresented and analyzed. Section IV presents the CRLB forestimation of the pulse phase, and how by employing theepoch folding approach and fitting the photon count data to the known pulsar rate function the pulse phase can beestimated is exp lains. It also compares the proposedestimator’s performance against the CRLB. In Section VI,using the measured photon TOAs, a ML estimator isdeveloped, and its statistical properties are studied. SectionVII discusses the relative dynamic equations between twoformation flights, as well as the statement function used inlater simulation processes. Section VIII introduces thealgorithm and procedures for using constrained adaptiveKalman Filter for non-linear systems to estimate thestatements and filter the errors. Section IX providesprecondition of simulation, and results of three-dimensionrelative navigation between two formation flights are given.Finally, some concluding remarks are given in Section X.And some proofs, derivations, and clarifying remarks arepresented in the Appendix.
机译:自主相对导航是关键之一 随行卫星RVD技术 (交会对接)任务,捕获和 维护在轨卫星和深空 探索。自主操作减少了对 人类与地球互动和交流的太空任务,如果不能使其完全独立,尤其是对于 多个航天器的集群。编队飞行 太空中的航天器是另一个吸引了人类 近年来引起了极大的兴趣。为了完成 地层,精确估算之间的相对位置 太空飞行器是必需的。航天器在 接近地球的轨道可以获得完整的自主性 当前全球导航的导航解决方案 卫星系统(GNSS)(B。W. Parkinson和J. J. Spiker, Jr.,1996)。但是,对于深空飞行任务或 GNSS不可用,一种替代的导航方法是 需要。使用基于地球的导航系统,例如 深空网(DSN)是有可能的。然而, 这样的系统在某些情况下性能低下 需要远程导航的地方。此外,他们 高度依赖与地球进行交流以进行分析 他们的数据。由于这些问题,需要更高的 准确性,并不断增加成本 航天器操作,航天器导航在不断发展 从基于地球的解决方案到更自主 方法(D. Folta,C。Gramling,A。Long,D。Leung和 S. Belur,1999年; R。Gounley,R。White和E. Gai, 1984)。内部自主导航系统 通过以下方式计算自己的导航和引导信息 使用板载传感器。一种可能是使用信号 是从X射线天体发射的。其中最...之一 可靠的X射线源是脉冲星。相对导航 航天器可以通过观察X射线来完成 来源并间接确定航天器的相对 位置。 对于已经使用的X射线脉冲星导航, 在绝对导航的两种情况下进行了研究(Sheikh,S.I., 等。 2006年,谢赫(S. I. I.)和派恩斯(Pines),D。J. 2006年,以及萨拉(Sala) J.等,2004)和相对导航(Sheikh,S. I., Golshan,A.R.和Pines,D.J. 2007,Emadzadeh,A.A., Speyer,J. L.和Hadaegh,F. Y. 2007,Emadzadeh,A. A.,Speyer,J.L.和Golshan,A.R. 2009,以及 A. A.的Emadzadeh,A。R.的Golshan和J. L的Speyer 2009年),表明关键任务是脉搏的估计 (Emadzadeh,A. A.,Speyer,J. L.,and Golshan,A. R.2009,Emadzadeh,A.A.,Golshan,A.R。和Speyer, J.L 2009,Golshan,A. R.和Sheikh,S. I. 2007,Hanson, J.等。 2008年,Emadzadeh,A. A.和Speyer,J. L. 2010)。在(Hanson,J.,et al.2008)利用时代 提出了折叠程序来估计脉冲 阶段,并在假设以下条件的情况下对建议的估算器进行了分析: 程序噪声是高斯噪声。在(madzadeh,A. A. and Speyer,J. L. 2010) 数学公式化,并显示了它是如何产生的 检索脉冲星强度。程序噪音为 分析,以及其统计特性,例如均值, 呈现方差和自相关函数。在这个 工作中,引入了脉冲延迟估计问题,并且 解释了如何使用历元折叠,相对 可以估计两个航天器之间的位置。 基于历元折叠,两个不同的脉冲延迟估计器 提出,并将其效果与 Cramér-Rao下界(CRLB)。还进行了调查 不精确的绝对速度数据如何影响位置 估计精度。 然后根据以上研究,相对 X射线导航编队飞行航天器 对脉冲星进行了调查。和一种新颖的相对导航 X射线的多卫星编队算法 提出了脉冲星测量。相对问题 利用X射线脉冲星在编队飞行之间导航 测量进行了调查。信号时差 通过信号的互相关来估计到达时间(TDOA) 处理,进一步用作测量以实现 相对导航。约束自适应卡尔曼 使用滤波器估计相对位置,并 编队飞行之间的速度。数值型 执行模拟以评估建议的导航 算法。此外,导航错误是 分析以提高此方法的准确性。 总之,本文提出了一种确定 两次编队飞行之间的相对导航解决方案 通过使用天体X射线脉冲星源。本文的其余部分 的组织如下。在第二节中, 描述了基于X射线脉冲星的相对导航, 和 描述X射线脉冲星信号的数学模型是 发达。此外,时代的折叠过程是 介绍和分析。第四部分介绍了CRLB 估算脉冲相位,以及如何采用 时代折叠方法,将光子计数数据拟合到已知的脉冲率函数,脉冲相位可以是 估计是解释。它还比较了建议的 估算者针对CRLB的表现。在第六节中 使用测得的光子TOA,ML估计器为 开发,并对其统计特性进行研究。部分 VII讨论了两者之间的相对动力学方程 编队飞行,以及用于 以后的模拟过程。第八节介绍了 约束自适应算法的算法和过程 用于非线性系统的卡尔曼滤波器来估计 语句并过滤错误。第九节规定 模拟的前提条件和三维结果 给出了两个编队飞行之间的相对导航。 最后,在第十节中给出了一些结论性意见。 并且一些证明,派生和澄清的言论是 在附录中介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号