【24h】

A TOOL FOR PREDICTING DETECTION LIMITS AND ERRORS IN EPMA

机译:用于预测EPMA中检测限制和错误的工具

获取原文

摘要

Detection limits and errors in electron probe microanalysis (EPMA) can be accurately predicted using a small dataset and the phi-rho-z routines - here we use phi-rho-z routines implemented in CalcZAF (freeware produced by Probe Software [1]). An accurate prediction aids the choice of spectrometers, instrument conditions (kV, beam current) and count times. The tool (implemented in Excel) uses a small reference dataset which consists of net intensities for each element and mean atomic number background regressions. The data can be easily extracted from previous analyses to include different accelerating voltages and different spectrometer/crystal arrangements. For each condition (element, kV and spectrometer/crystal) a net intensity for a known composition (i.e., standard) is required. Net intensity for a compound standard is converted into intensity for a pure element standard using the matrix correction factor (ZAFCOR) calculated from phi-rho-z routines in CalcZAF (Table 1). Background intensities are stored as a second-order polynomial regression of background height and mean atomic number, where background height is adjusted using the absorption correction factor (ABSCOR) to remove the effect of continuum absorption. This follows the background method of Donovan et al. [2], and can be automated in the Probe for EPMA software [3] or calculated individually in CalcZAF. The data can then be interrogated (Fig. 1) to calculate detection limits and errors for the sample of interest. The pure element net intensity is converted into the sample net intensity using the element ZAFCOR calculated for the sample. The background intensity is determined from the calculated atomic number of the sample and corrected for continuum absorption using element ABSCOR calculated for the sample. Once the net intensity and background intensity are known the detection limit and error can be readily calculated using the formulas of Scott and Love [4]. If we consider the example shown in Fig. 1 of Ca at 20 kV in olivine (SH11), data is present for spectrometers 3 and 5 (spectrometer 1 is missing background intensity). It can be seen in the orange pane that spectrometer 5 gives lower errors and detection limits, and the effect of summing the two spectrometers is also calculated. The effect of increasing beam current and count time can be invested in the lower two green panels - here we calculate the errors and detection limits at 200 nA and 120 second count times. Both error and detection limit are reduced by an order of magnitude. The calculated values give a good approximation of measured values at the same condition (Table 2).
机译:可以使用小型数据集和PHI-Rho-Z例程准确地预测电子探针微内分析(EPMA)中的检测限制和误差 - 这里我们使用在COMPZAF中实现的PHI-RHO-Z例程(探测器软件产生的免费器[1]) 。精确的预测辅助辅助光谱仪,仪器条件(kV,梁电流)和计数时间的选择。该工具(在Excel中实现)使用小的参考数据集,该数据集由每个元素和平均原子数背景回归组成的净强度。可以从先前分析中容易地提取数据,以包括不同的加速电压和不同的光谱仪/晶体布置。对于每个条件(元素,kV和光谱仪/晶体),需要已知组合物(即标准)的净强度。化合物标准的净强度使用来自CalczAF中的Phi-Rho-Z常规计算的基质校正因子(Zafcor)转换为纯元标准的强度(表1)。背景技术强度被存储为背景高度和平均原子数的二阶多项式回归,其中使用吸收校正因子(Abscor)调节背景高度以去除连续um吸收的效果。这遵循Donovan等人的背景方法。 [2],并且可以在EPMA软件[3]的探针中自动化,或者在COMPZAF中单独计算。然后可以询问数据(图1)以计算感兴趣的样本的检测限和误差。使用针对样品计算的元素Zafcor将纯元素净强度转换为样本净强度。从计算出的样品的原子序数确定背景强度,并使用针对样品计算的元素ABSCOR校正的连续吸收。一旦净强度和背景强度都知道,可以使用斯科特和爱的公式容易地计算检测限和误差[4]。如果我们考虑图1所示的示例,则在橄榄石(SH11)中的CA在20kV中的图1,对于光谱仪3和5(光谱仪1缺少背景强度)存在数据。在橙色窗格中可以看出,光谱仪5提供较低的误差和检测限,并且还计算了两个光谱仪的求和的效果。增加光束电流和计数时间的效果可以在下两个绿色面板中投入 - 这里,我们计算200A NA和120秒计数时的误差和检测限。误差和检测限度都减少了一个幅度。计算值在相同条件下给出测量值的良好近似值(表2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号