【24h】

A TOOL FOR PREDICTING DETECTION LIMITS AND ERRORS IN EPMA

机译:预测EPMA中检测极限和错误的工具

获取原文
获取原文并翻译 | 示例

摘要

Detection limits and errors in electron probe microanalysis (EPMA) can be accurately predicted using a small dataset and the phi-rho-z routines - here we use phi-rho-z routines implemented in CalcZAF (freeware produced by Probe Software [1]). An accurate prediction aids the choice of spectrometers, instrument conditions (kV, beam current) and count times. The tool (implemented in Excel) uses a small reference dataset which consists of net intensities for each element and mean atomic number background regressions. The data can be easily extracted from previous analyses to include different accelerating voltages and different spectrometer/crystal arrangements. For each condition (element, kV and spectrometer/crystal) a net intensity for a known composition (i.e., standard) is required. Net intensity for a compound standard is converted into intensity for a pure element standard using the matrix correction factor (ZAFCOR) calculated from phi-rho-z routines in CalcZAF (Table 1). Background intensities are stored as a second-order polynomial regression of background height and mean atomic number, where background height is adjusted using the absorption correction factor (ABSCOR) to remove the effect of continuum absorption. This follows the background method of Donovan et al. [2], and can be automated in the Probe for EPMA software [3] or calculated individually in CalcZAF. The data can then be interrogated (Fig. 1) to calculate detection limits and errors for the sample of interest. The pure element net intensity is converted into the sample net intensity using the element ZAFCOR calculated for the sample. The background intensity is determined from the calculated atomic number of the sample and corrected for continuum absorption using element ABSCOR calculated for the sample. Once the net intensity and background intensity are known the detection limit and error can be readily calculated using the formulas of Scott and Love [4]. If we consider the example shown in Fig. 1 of Ca at 20 kV in olivine (SH11), data is present for spectrometers 3 and 5 (spectrometer 1 is missing background intensity). It can be seen in the orange pane that spectrometer 5 gives lower errors and detection limits, and the effect of summing the two spectrometers is also calculated. The effect of increasing beam current and count time can be invested in the lower two green panels - here we calculate the errors and detection limits at 200 nA and 120 second count times. Both error and detection limit are reduced by an order of magnitude. The calculated values give a good approximation of measured values at the same condition (Table 2).
机译:可以使用一个小的数据集和phi-rho-z例程准确预测电子探针微分析(EPMA)中的检测限和错误-在这里,我们使用在CalcZAF中实现的phi-rho-z例程(Probe Software [1]产生的免费软件) 。准确的预测有助于选择光谱仪,仪器条件(kV,束电流)和计数时间。该工具(在Excel中实现)使用一个小的参考数据集,该数据集由每个元素的净强度和平均原子序数背景回归组成。可以从以前的分析中轻松提取数据,以包括不同的加速电压和不同的光谱仪/晶体布置。对于每种条件(元素,kV和光谱仪/晶体),需要已知组成(即标准)的净强度。使用从CalcZAF中的phi-rho-z例程计算出的矩阵校正因子(ZAFCOR),将化合物标准品的净强度转换为纯元素标准品的强度(表1)。将背景强度存储为背景高度和平均原子序数的二阶多项式回归,其中使用吸收校正因子(ABSCOR)调整背景高度以消除连续吸收的影响。这遵循了Donovan等人的背景方法。 [2],并且可以在Probe for EPMA软件[3]中自动化或在CalcZAF中单独计算。然后可以查询数据(图1),以计算目标样品的检出限和误差。使用为样品计算的元素ZAFCOR,将纯净元素净强度转换为样品净强度。由计算出的样品原子序数确定背景强度,并使用为样品计算出的元素ABSCOR校正连续吸收。一旦知道了净强度和背景强度,就可以使用Scott和Love [4]的公式轻松计算出检测限和误差。如果我们考虑橄榄石(SH11)中20 kV时Ca的图1所示示例,则存在光谱仪3和5的数据(光谱仪1缺少背景强度)。在橙色窗格中可以看到,光谱仪5的误差和检测限更低,并且还计算了将两个光谱仪相加的效果。可以在下面的两个绿色面板中增加束电流和计数时间的影响-在这里我们计算200 nA和120秒计数时间的误差和检测极限。误差和检测极限都降低了一个数量级。计算值给出了在相同条件下的测量值的良好近似值(表2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号